LARGE SCALE NEURAL NETWORK SIMULATIONS

1990 ◽  
Vol 01 (02n03) ◽  
pp. 259-277 ◽  
Author(s):  
G. A. KOHRING

The current state of large scale, numerical simulations of neural networks is reviewed. Hardware and software improvements make it likely that biological size networks, i.e., networks with more than 1010 couplings, can be simulated in the near future. Sample programs for the efficient simulation of a few simple models are presented as an aid to researchers just entering the field.

2021 ◽  
Author(s):  
Raymond Pavloski

<p>Demonstrating that an understanding of how neural networks produce a specific quality of experience has been achieved would provide a foundation for new research programs and neurotechnologies. The phenomena that comprise cortical prosthetic vision have two desirable properties for the pursuit of this goal: 1) Models of the subjective qualities of cortical prosthetic vision can be constructed; and 2) These models can be related in a natural way to models of the objective aspects of cortical prosthetic vision. Sense element engagement theory portrays the qualities of cortical prosthetic vision together with coordinated objective neural phenomena as constituting sensible spatiotemporal patterns that are produced by neural interactions. Small-scale neural network simulations are used to illustrate how these patterns are thought to arise. It is proposed that simulations and an electronic neural network (ENN) should be employed in devising tests of the theory. Large-scale simulations can provide estimates of parameter values that are required to construct an ENN. The ENN will be used to develop a prosthetic device that is predicted by the theory to produce visual forms in a novel fashion. According to the theory, confirmation of this prediction would also provide evidence that this ENN is a sentient device.</p>


2021 ◽  
Author(s):  
Raymond Pavloski

<p>Demonstrating that an understanding of how neural networks produce a specific quality of experience has been achieved would provide a foundation for new research programs and neurotechnologies. The phenomena that comprise cortical prosthetic vision have two desirable properties for the pursuit of this goal: 1) Models of the subjective qualities of cortical prosthetic vision can be constructed; and 2) These models can be related in a natural way to models of the objective aspects of cortical prosthetic vision. Sense element engagement theory portrays the qualities of cortical prosthetic vision together with coordinated objective neural phenomena as constituting sensible spatiotemporal patterns that are produced by neural interactions. Small-scale neural network simulations are used to illustrate how these patterns are thought to arise. It is proposed that simulations and an electronic neural network (ENN) should be employed in devising tests of the theory. Large-scale simulations can provide estimates of parameter values that are required to construct an ENN. The ENN will be used to develop a prosthetic device that is predicted by the theory to produce visual forms in a novel fashion. According to the theory, confirmation of this prediction would also provide evidence that this ENN is a sentient device.</p>


2021 ◽  
Vol 40 (3) ◽  
pp. 1-13
Author(s):  
Lumin Yang ◽  
Jiajie Zhuang ◽  
Hongbo Fu ◽  
Xiangzhi Wei ◽  
Kun Zhou ◽  
...  

We introduce SketchGNN , a convolutional graph neural network for semantic segmentation and labeling of freehand vector sketches. We treat an input stroke-based sketch as a graph with nodes representing the sampled points along input strokes and edges encoding the stroke structure information. To predict the per-node labels, our SketchGNN uses graph convolution and a static-dynamic branching network architecture to extract the features at three levels, i.e., point-level, stroke-level, and sketch-level. SketchGNN significantly improves the accuracy of the state-of-the-art methods for semantic sketch segmentation (by 11.2% in the pixel-based metric and 18.2% in the component-based metric over a large-scale challenging SPG dataset) and has magnitudes fewer parameters than both image-based and sequence-based methods.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2852
Author(s):  
Parvathaneni Naga Srinivasu ◽  
Jalluri Gnana SivaSai ◽  
Muhammad Fazal Ijaz ◽  
Akash Kumar Bhoi ◽  
Wonjoon Kim ◽  
...  

Deep learning models are efficient in learning the features that assist in understanding complex patterns precisely. This study proposed a computerized process of classifying skin disease through deep learning based MobileNet V2 and Long Short Term Memory (LSTM). The MobileNet V2 model proved to be efficient with a better accuracy that can work on lightweight computational devices. The proposed model is efficient in maintaining stateful information for precise predictions. A grey-level co-occurrence matrix is used for assessing the progress of diseased growth. The performance has been compared against other state-of-the-art models such as Fine-Tuned Neural Networks (FTNN), Convolutional Neural Network (CNN), Very Deep Convolutional Networks for Large-Scale Image Recognition developed by Visual Geometry Group (VGG), and convolutional neural network architecture that expanded with few changes. The HAM10000 dataset is used and the proposed method has outperformed other methods with more than 85% accuracy. Its robustness in recognizing the affected region much faster with almost 2× lesser computations than the conventional MobileNet model results in minimal computational efforts. Furthermore, a mobile application is designed for instant and proper action. It helps the patient and dermatologists identify the type of disease from the affected region’s image at the initial stage of the skin disease. These findings suggest that the proposed system can help general practitioners efficiently and effectively diagnose skin conditions, thereby reducing further complications and morbidity.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Changming Wu ◽  
Heshan Yu ◽  
Seokhyeong Lee ◽  
Ruoming Peng ◽  
Ichiro Takeuchi ◽  
...  

AbstractNeuromorphic photonics has recently emerged as a promising hardware accelerator, with significant potential speed and energy advantages over digital electronics for machine learning algorithms, such as neural networks of various types. Integrated photonic networks are particularly powerful in performing analog computing of matrix-vector multiplication (MVM) as they afford unparalleled speed and bandwidth density for data transmission. Incorporating nonvolatile phase-change materials in integrated photonic devices enables indispensable programming and in-memory computing capabilities for on-chip optical computing. Here, we demonstrate a multimode photonic computing core consisting of an array of programable mode converters based on on-waveguide metasurfaces made of phase-change materials. The programmable converters utilize the refractive index change of the phase-change material Ge2Sb2Te5 during phase transition to control the waveguide spatial modes with a very high precision of up to 64 levels in modal contrast. This contrast is used to represent the matrix elements, with 6-bit resolution and both positive and negative values, to perform MVM computation in neural network algorithms. We demonstrate a prototypical optical convolutional neural network that can perform image processing and recognition tasks with high accuracy. With a broad operation bandwidth and a compact device footprint, the demonstrated multimode photonic core is promising toward large-scale photonic neural networks with ultrahigh computation throughputs.


2019 ◽  
Vol 10 (15) ◽  
pp. 4129-4140 ◽  
Author(s):  
Kyle Mills ◽  
Kevin Ryczko ◽  
Iryna Luchak ◽  
Adam Domurad ◽  
Chris Beeler ◽  
...  

We present a physically-motivated topology of a deep neural network that can efficiently infer extensive parameters (such as energy, entropy, or number of particles) of arbitrarily large systems, doing so with scaling.


Author(s):  
Kai-Chun Cheng ◽  
Ray E. Eberts

An Advanced Traveler Information System (ATIS), a key component of Intelligent Vehicle highway Systems (IVHS) in the near future, will help travelers find locations of restaurants, lodging, gas stations, and rest stops. On typical ATIS displays, which are now being incorporated in some advanced vehicles, the choices for these traveler services are presented to the vehicle occupants alphabetically. An experiment was conducted to determine whether individualizing the display through the use of neural networks enhanced performance when choosing restaurants. The neural network ATIS was compared to an ATIS that displayed the most frequently chosen restaurants at the top, one that alphabetized the list of restaurants, and one that randomly displayed the restaurant choices. The time to choose a restaurant was significantly faster for the individualized displays (neural network and frequency) when compared to the nonindividualized displays (alphabetical and random). When the two individualized displays were compared, choice time was significantly faster for the neural network approach.


1997 ◽  
Vol 1 (2) ◽  
pp. 345-356 ◽  
Author(s):  
Z. Rao ◽  
D. G. Jamieson

Abstract. The increasing incidence of groundwater pollution has led to recognition of a need to develop objective techniques for designing reniediation schemes. This paper outlines one such possibility for determining how many abstraction/injection wells are required, where they should be located etc., having regard to minimising the overall cost. To that end, an artificial neural network is used in association with a 2-D or 3-D groundwater simulation model to determine the performance of different combinations of abstraction/injection wells. Thereafter, a genetic algorithm is used to identify which of these combinations offers the least-cost solution to achieve the prescribed residual levels of pollutant within whatever timescale is specified. The resultant hybrid algorithm has been shown to be effective for a simplified but nevertheless representative problem; based on the results presented, it is expected the methodology developed will be equally applicable to large-scale, real-world situations.


Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1167
Author(s):  
Van Suong Nguyen

In this article, a multitasking system is investigated for automatic ship berthing in marine practices, based on artificial neural networks (ANNs). First, a neural network with separate structures in hidden layers is developed, based on a head-up coordinate system. This network is trained once with the berthing data of a ship in an original port to conduct berthing tasks in different ports. Then, on the basis of the developed network, an integrated mechanism including three negative signs is linked to achieve an integrated neural controller. This controller can bring the ship to a berth on each side of the ship in different ports. The whole system has the ability to berth for different tasks without retraining the neural network. Finally, to validate the effectiveness of the proposed system for automatic ship berthing, numerical simulations were performed for berthing tasks, such as different ports, and berthing each side of the ship. The results indicate that the proposed system shows a good performance in automatic ship berthing.


Sign in / Sign up

Export Citation Format

Share Document