Classification of micro-array gene expression data using neural networks

Author(s):  
David Tian ◽  
Keith Burley
Author(s):  
Ljubomir Buturović ◽  
Dejan Miljković

ABSTRACTConvolutional neural networks (CNNs) represent a major breakthrough in image classification. However, there has not been similar progress in applying CNNs, or neural networks of any kind, to classification of tabular data. We developed and evaluated a novel method, TAbular Convolution (TAC), for classification of such data using CNNs by transforming tabular data to images and then classifying the images using CNNs. The transformation is performed by treating each row of tabular data (i.e., vector of features) as an image filter (kernel), and applying the filter to a fixed base image. A CNN is then trained to classify the filtered images. We applied TAC to classification of gene expression data derived from blood samples of patients with bacterial or viral infections. Our results demonstrate that off-the-shelf ResNet can classify the gene expression data as accurately as the current non-CNN state-of-the-art classifiers.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ramin Hasibi ◽  
Tom Michoel

Abstract Background Molecular interaction networks summarize complex biological processes as graphs, whose structure is informative of biological function at multiple scales. Simultaneously, omics technologies measure the variation or activity of genes, proteins, or metabolites across individuals or experimental conditions. Integrating the complementary viewpoints of biological networks and omics data is an important task in bioinformatics, but existing methods treat networks as discrete structures, which are intrinsically difficult to integrate with continuous node features or activity measures. Graph neural networks map graph nodes into a low-dimensional vector space representation, and can be trained to preserve both the local graph structure and the similarity between node features. Results We studied the representation of transcriptional, protein–protein and genetic interaction networks in E. coli and mouse using graph neural networks. We found that such representations explain a large proportion of variation in gene expression data, and that using gene expression data as node features improves the reconstruction of the graph from the embedding. We further proposed a new end-to-end Graph Feature Auto-Encoder framework for the prediction of node features utilizing the structure of the gene networks, which is trained on the feature prediction task, and showed that it performs better at predicting unobserved node features than regular MultiLayer Perceptrons. When applied to the problem of imputing missing data in single-cell RNAseq data, the Graph Feature Auto-Encoder utilizing our new graph convolution layer called FeatGraphConv outperformed a state-of-the-art imputation method that does not use protein interaction information, showing the benefit of integrating biological networks and omics data with our proposed approach. Conclusion Our proposed Graph Feature Auto-Encoder framework is a powerful approach for integrating and exploiting the close relation between molecular interaction networks and functional genomics data.


Sign in / Sign up

Export Citation Format

Share Document