Relation Prediction for Answering Natural Language Questions over knowledge Graphs

Author(s):  
Fen Zhao ◽  
Jie Hou ◽  
Yinguo Li ◽  
Ling Bai
2021 ◽  
Vol 47 (05) ◽  
Author(s):  
NGUYỄN CHÍ HIẾU

Knowledge Graphs are applied in many fields such as search engines, semantic analysis, and question answering in recent years. However, there are many obstacles for building knowledge graphs as methodologies, data and tools. This paper introduces a novel methodology to build knowledge graph from heterogeneous documents.  We use the methodologies of Natural Language Processing and deep learning to build this graph. The knowledge graph can use in Question answering systems and Information retrieval especially in Computing domain


Semantic Web ◽  
2021 ◽  
pp. 1-17
Author(s):  
Lucia Siciliani ◽  
Pierpaolo Basile ◽  
Pasquale Lops ◽  
Giovanni Semeraro

Question Answering (QA) over Knowledge Graphs (KG) aims to develop a system that is capable of answering users’ questions using the information coming from one or multiple Knowledge Graphs, like DBpedia, Wikidata, and so on. Question Answering systems need to translate the user’s question, written using natural language, into a query formulated through a specific data query language that is compliant with the underlying KG. This translation process is already non-trivial when trying to answer simple questions that involve a single triple pattern. It becomes even more troublesome when trying to cope with questions that require modifiers in the final query, i.e., aggregate functions, query forms, and so on. The attention over this last aspect is growing but has never been thoroughly addressed by the existing literature. Starting from the latest advances in this field, we want to further step in this direction. This work aims to provide a publicly available dataset designed for evaluating the performance of a QA system in translating articulated questions into a specific data query language. This dataset has also been used to evaluate three QA systems available at the state of the art.


Proceedings ◽  
2018 ◽  
Vol 2 (19) ◽  
pp. 1228 ◽  
Author(s):  
Unai Zulaika ◽  
Asier Gutiérrez ◽  
Diego López-de-Ipiña

Foodbar is a Cloud-based gastroevaluation solution, leveraging IBM Watson cognitive services. It brings together machine and human intelligence to enable cognitive gastroevaluation of “tapas” or “pintxos” , i.e., small miniature bites or dishes. Foodbar matchmakes users’ profiles, preferences and context against an elaborated knowledge graph based model of user and machine generated information about food items. This paper reasons about the suitability of this novel way of modelling heterogeneous, with diverse degree of veracity, information to offer more stakeholder satisfying knowledge exploitation solutions, i.e., those offering more relevant and elaborated, directly usable, information to those that want to take decisions regarding food in miniature. An evaluation of the information modelling power of such approach is performed highlighting why such model can offer better more relevant and enriched answers to natural language questions posed by users.


2021 ◽  
pp. 3-15
Author(s):  
Boxuan Jia ◽  
Hui Xu ◽  
Maosheng Guo

2021 ◽  
pp. 107626
Author(s):  
Mahdi Bakhshi ◽  
Mohammadali Nematbakhsh ◽  
Mehran Mohsenzadeh ◽  
Amir Masoud Rahmani

Author(s):  
Jian Sun ◽  
Yu Zhou ◽  
Chengqing Zong

The relation learning between two entities is an essential task in knowledge graph (KG) completion that has received much attention recently. Previous work almost exclusively focused on relations widely seen in the original KGs, which means that enough training data are available for modeling. However, long-tail relations that only show in a few triples are actually much more common in practical KGs. Without sufficiently large training data, the performance of existing models on predicting long-tail relations drops impressively. This work aims to predict the relation under a challenging setting where only one instance is available for training. We propose a path-based one-shot relation prediction framework, which can extract neighborhood information of an entity based on the relation query attention mechanism to learn transferable knowledge among the same relation. Simultaneously, to reduce the impact of long-tail entities on relation prediction, we selectively fuse path information between entity pairs as auxiliary information of relation features. Experiments in three one-shot relation learning datasets show that our proposed framework substantially outperforms existing models on one-shot link prediction and relation prediction.


Sign in / Sign up

Export Citation Format

Share Document