A new Bi-level programming model for uncertain supply chain problems

Author(s):  
Hanshi Shentu ◽  
Liuyang Yuan ◽  
Weibin Zhang
2021 ◽  
Vol 13 (15) ◽  
pp. 8271
Author(s):  
Yaqing Xu ◽  
Jiang Zhang ◽  
Zihao Chen ◽  
Yihua Wei

Although there are highly discrete stochastic demands in practical supply chain problems, they are seldom considered in the research on supply chain systems, especially the single-manufacturer multi-retailer supply chain systems. There are no significant differences between continuous and discrete demand supply chain models, but the solutions for discrete random demand models are more challenging and difficult. This paper studies a supply chain system of a single manufacturer and multiple retailers with discrete stochastic demands. Each retailer faces a random discrete demand, and the manufacturer utilizes different wholesale prices to influence each retailer’s ordering decision. Both Make-To-Order and Make-To-Stock scenarios are considered. For each scenario, the corresponding Stackelberg game model is constructed respectively. By proving a series of theorems, we transfer the solution of the game model into non-linear integer programming model, which can be easily solved by a dynamic programming method. However, with the increase in the number of retailers and the production capacity of manufacturers, the computational complexity of dynamic programming drastically increases due to the Dimension Barrier. Therefore, the Fast Fourier Transform (FFT) approach is introduced, which significantly reduces the computational complexity of solving the supply chain model.


2020 ◽  
Vol 18 (4) ◽  
Author(s):  
Reza Babazadeh ◽  
Ali Sabbaghnia ◽  
Fatemeh Shafipour

: Blood and its products play an undeniable role in human life. In recent years, although both academics and practitioners have investigated blood-related problems, further enhancement is still warranted. In this study, a mixed-integer linear programming model was proposed for local blood supply chain management. A supply network, including temporary and fixed blood donation facilities, blood banks, and blood processing centers, was designed regarding the deteriorating nature of blood. The proposed model was applied in a real case in Urmia, Iran. The numerical results and sensitivity analysis of the key model parameters ensured the applicability of the proposed model.


2018 ◽  
Vol 29 (1) ◽  
pp. 365-386 ◽  
Author(s):  
Raed AlHusain ◽  
Reza Khorramshahgol

Purpose The purpose of this paper is twofold. Initially, a multi-objective binary integer programming model is proposed for designing an appropriate supply chain that takes into consideration both responsiveness and efficiency. Then, a responsiveness-cost efficient frontier is generated for the supply chain design that can help organizations find the right balance between responsiveness and efficiency, and hence achieve a strategic fit between organizational strategy and supply chain capabilities. Design/methodology/approach The proposed SC design model used both cross-functional and logistical SC drivers to build a binary integer programming model. To this end, various alternative solutions that correspond to different SC design portfolios were generated and a responsiveness-cost efficient frontier was constructed. Findings Various alternative solutions that correspond to different SC designs were generated and a responsiveness-cost efficient frontier was constructed to help the decision makers to design SC portfolios to achieve a strategic fit between organizational strategy and SC capabilities. Practical implications The proposed methodology enables the decision makers to incorporate both qualitative and quantitative judgements in SC design. The methodology is easy to use and it can be readily implemented by a software. Originality/value The proposed methodology allows for subjective value judgements of the decision makers to be considered in SC design and the efficiency-responsiveness frontier generated by the methodology provides a trade-off to be used when choosing between speed and cost efficiency in SC design.


Sign in / Sign up

Export Citation Format

Share Document