Damage-free flattening technology of large diameter Si wafer employing numerically controlled local SF/sub 6//H/sub 2/ downstream plasma

Author(s):  
M. Yanagisawa ◽  
H. Ogawa ◽  
Y. Horiike
Keyword(s):  
1998 ◽  
Vol 525 ◽  
Author(s):  
C. W. Liu ◽  
M. H. Lee ◽  
C. Y. Chao ◽  
C. Y. Chen ◽  
C. C. Yang ◽  
...  

ABSTRACTAlthough a resolution of 1 °C of the grating temperature measurements has been demonstrated in RTP process[l], the conventional etching process to fabricate gratings on large diameter wafers makes it impractical for the production purpose. We, therefore, used the laser ablation technique to fabricate such Si gratings without any lithography and etching process. To increase the sensitivity of measurements, a large-angle diffracted beam was used by optimizing the incident angle and the grating period. As a result, an improvement of sensitivity could be obtained. The Si gratings were fabricated by the interference of two high power laser beams with the wavelength of 266 nm. The grating period was determined by interference condition, and could be varied from 180 to 550 nm, which would be beneficial to increase the measurement sensitivity. HeNe laser was used as the light source to measure the thermal expansion of grating periods for the temperature measurements. The temperature measurement of Si wafer from room temperature to 800 °C was demonstrated.


Author(s):  
Kenji Hirose ◽  
Toshiyuki Enomoto

Silicon (Si) wafers are the most commonly used substrates for manufacturing semiconductor devices. The design rule is miniaturized, and the chip size is increasing to improve the degree of the device integration. Then Si wafer is required to be manufactured with the higher flatness and larger diameter to meet above demands. The double-sided polishing is widely adopted as the finishing process of the wafer manufacturing, because the wafers with the good surface quality and flatness can be obtained economically. However, the polishing technology has serious problems: It is very difficult to set the appropriate conditions for stably polishing the Si wafer and wearing the pad to the high flatness. In our previous work, the optimization of the polishing conditions with the theoretical calculation was conducted, however, the calculation did not consider the relative motion direction having large influence on polishing behaviours. In this study, the optimizing method considering the relative motion direction was newly developed, and it was revealed that the calculation results corresponded well with the experimental results. Furthermore, it was found that the time-fluctuation of the wafer flatness was larger in the case of the wafer having taper shape, compared to that having convex shape in the calculation.


Author(s):  
A. Yamada ◽  
A. Shibano ◽  
K. Harasawa ◽  
T. Kobayashi ◽  
H. Fukuda ◽  
...  

A newly developed digital scanning electron microscope, the JSM-6300, has the following features: Equipped with a narrower conical objective lens (OL), it allows high resolution images to be obtained easily at a short working distance (WD) and a large specimen tilt angle. In addition, it is provided with automatic functions and digital image processing functions for ease of operation.Conical C-F lens: The newly developed conical C-F objective lens, having low aberration characteristics over a wide WD range, allows a large-diameter (3-inch) specimen to be tilted up to 60° at short WD, and provides images with low magnifications starting at 10*. On the bottom of the lens, a p n junction type detector is provided to detect backscattered electrons (BE) from the specimen. As the narrower conical 0L increases the secondary electron (SE) detector's field intensity on the specimen surface, high SE image quality is obtained.


2020 ◽  
Vol 7 (2) ◽  
pp. 21-28
Author(s):  
SALI RADZHAPOV ◽  
◽  
RUSTAM RAKHIMOV ◽  
BEGJAN RADZHAPOV ◽  
MARS ZUFAROV

The article describes the developed radiometer for Express measurement of alpha radiation of radioactive elements based on a large-diameter silicon detector. The main element of the PPD detector is made using computer mathematical modeling of all stages of the technological process of manufacturing detectors, taking into account at each stage the degree of influence of the properties of the initial silicon on the electrophysical and radiometric characteristics of the detector. Detectors are manufactured for certain types of devices. The developed radiometer is designed to measure alpha radiation of natural isotopes (238U, 234U, 232Th, 226Ra, 222Rn, 218Po, 214Bi, etc.) in various environments. It also shows the principle of operation of the device, provides a block diagram of the measuring complex, describes the electronic components of the radiometer, as well as the block diagram. Signal transformations (spectrum transfer, filtering, accumulation) are implemented programmatically on the basis of a digital processing module. The device can detect the presence of specific elements in various environments, as well as protect people from the harmful effects of adverse radiation and can be used both in the field and stationary.


2012 ◽  
Vol 57 (2) ◽  
pp. 363-373
Author(s):  
Jan Macuda

Abstract In Poland all lignite mines are dewatered with the use of large-diameter wells. Drilling of such wells is inefficient owing to the presence of loose Quaternary and Tertiary material and considerable dewatering of rock mass within the open pit area. Difficult geological conditions significantly elongate the time in which large-diameter dewatering wells are drilled, and various drilling complications and break-downs related to the caving may occur. Obtaining higher drilling rates in large-diameter wells can be achieved only when new cutter bits designs are worked out and rock drillability tests performed for optimum mechanical parameters of drilling technology. Those tests were performed for a bit ø 1.16 m in separated macroscopically homogeneous layers of similar drillability. Depending on the designed thickness of the drilled layer, there were determined measurement sections from 0.2 to 1.0 m long, and each of the sections was drilled at constant rotary speed and weight on bit values. Prior to drillability tests, accounting for the technical characteristic of the rig and strength of the string and the cutter bit, there were established limitations for mechanical parameters of drilling technology: P ∈ (Pmin; Pmax) n ∈ (nmin; nmax) where: Pmin; Pmax - lowest and highest values of weight on bit, nmin; nmax - lowest and highest values of rotary speed of bit, For finding the dependence of the rate of penetration on weight on bit and rotary speed of bit various regression models have been analyzed. The most satisfactory results were obtained for the exponential model illustrating the influence of weight on bit and rotary speed of bit on drilling rate. The regression coefficients and statistical parameters prove the good fit of the model to measurement data, presented in tables 4-6. The average drilling rate for a cutter bit with profiled wings has been described with the form: Vśr= Z ·Pa· nb where: Vśr- average drilling rate, Z - drillability coefficient, P - weight on bit, n - rotary speed of bit, a - coefficient of influence of weight on bit on drilling rate, b - coefficient of influence of rotary speed of bit on drilling rate. Industrial tests were performed for assessing the efficiency of drilling of large-diameter wells with a cutter bit having profiled wings ø 1.16 m according to elaborated model of average rate of drilling. The obtained values of average rate of drilling during industrial tests ranged from 8.33×10-4 to 1.94×10-3 m/s and were higher than the ones obtained so far, i.e. from 181.21 to 262.11%.


Sign in / Sign up

Export Citation Format

Share Document