The development of the performance measuring system for the phase change heat transport device-heat pipe, vapor chamber and defrost plate

Author(s):  
Wei-Keng Lin ◽  
Chen-I Chao ◽  
Y. M. Tzou ◽  
H. G. H. Chang ◽  
Paul Wang
Author(s):  
Matthew R. Pearson ◽  
Jamal Seyed-Yagoobi

Electrohydrodynamic (EHD) conduction pumping can be readily used to pump a thin film of a dielectric liquid along a surface, using electrodes that are embedded into the surface. This effect has been demonstrated under adiabatic conditions and has also been used to create a two-phase heat transport device that is similar to a heat pipe, but with the wicking structure replaced by an EHD conduction pump. In this study, a circular two-phase heat transport device is created. The device features circular electrodes that are arranged concentrically on the bottom surface and that pump a liquid film towards a heat source located at the center of the device. This heat source evaporates the liquid, and a large annular condenser at the periphery of the bottom surface provides a continuous supply of fresh liquid. This radial pumping configuration provides several advantages. Most notably, the heat source is wetted with fresh liquid from all 360 degrees, thereby reducing the amount of distance that must be travelled compared to a linear device. Consequently, the heat flux that can be removed from the central heat source far exceeds the normal critical heat flux of the working fluid. Electrodes are embedded in the condenser, adiabatic, and evaporator sections to maximize the amount of pumping head that can be generated and thereby maximize the heat flux removal.


Sign in / Sign up

Export Citation Format

Share Document