ENEPIG - How to overcome limitations of pure palladium plating solutions

Author(s):  
Britta Schafsteller ◽  
Gustavo Ramos ◽  
Dirk Tews ◽  
Dimitri Voloshyn
Keyword(s):  
1965 ◽  
pp. 1071-1073 ◽  
Author(s):  
B. M. Boerstoel ◽  
F. J. du Chatenier ◽  
G. J. van den Berg

1997 ◽  
Vol 12 (2) ◽  
pp. 392-397 ◽  
Author(s):  
Shenglei Che ◽  
Osamu Sakurai ◽  
Hiroshi Funakubo ◽  
Kazuo Shinozaki ◽  
Nobuyasu Mizutani

Ca-modified spherical palladium particles were prepared from the mixed solution of Pd(NO3)2 and Ca(NO3)2 by ultrasonic spray pyrolysis. Pure palladium powder and that modified with less than 55 ppm Ca were composed of single crystal particles. However, Ca addition of more than 500 ppm resulted in polycrystalline particles. Crystallite size of the particles decreased with the increase of Ca addition and changed dramatically at the addition of some hundred ppm. Ca additive did not form solid solution with palladium but formed CaPd3O4 on the surface and grain boundary of the particles. 50 ppm−1% of Ca addition significantly reduced the oxidation of palladium powder. More addition of Ca resulted in excess oxidation due to the reaction between palladium and calcium oxide.


NANO ◽  
2019 ◽  
Vol 14 (09) ◽  
pp. 1950120
Author(s):  
Yanru Yin ◽  
Changna Wen ◽  
Ning Ma ◽  
Baoyan Wang ◽  
Lianying Zhang ◽  
...  

Palladium and palladium-silver bimetallic nanocrystals have been synthesized hydrothermally by using environmental-friendly sodium alginate as the stabilizer and reducing agent. The pure palladium nanoparticles were spherical-like possibly due to the principle of the lowest surface energy, however, the formation of bimetallic palladium-silver nanoparticles was much more complicated, which was thinner and more irregular nanostructures than pure palladium nanoparticles. Electrochemical measurements showed that the electrocatalytic activity toward ethanol oxidation was increased first with the increase of silver content in bimetallic nanoparticles, from pure palladium of around 1070[Formula: see text]mA/mg, to PdAg-20 of 1160[Formula: see text]mA/mg and to PdAg-10 of 1750[Formula: see text]mA/mg, and declined greatly at a high content of silver, approximately 279[Formula: see text]mA/mg. Electrochemical stability test showed that PdAg-10 and PdAg-5 were the best and worst among four palladium-based samples, respectively. Based on the experimental data, the formation mechanism of pure palladium and palladium-silver bimetallic nanoparticles and the structure-property relationship of these samples have been discussed.


1968 ◽  
Vol 46 (18) ◽  
pp. 2065-2071 ◽  
Author(s):  
C. T. Haywood ◽  
L. Verdini

The resistivity of palladium and palladium–hydrogen alloys has been studied in the temperature range 2–300 °K. At low temperatures (10 °K < T < 60 °K), it is found that ρ1 is proportional to Tn with n = 3.1 for pure palladium; but n decreases to 2.3 for an alloy with H/Pd = 0.25. For high concentrations and at low temperatures, the resistivity is found to be dependent upon the time and rate of cooling through the [Formula: see text] transformation. The residual resistivity is lower for faster cooling rates.The increase in resistivity due to 1 at. % hydrogen in palladium is calculated and found to be of the same order of magnitude as that for interstitials in other f.c.c. metals, but less then that found for hydrogen in the b.c.c. transition metals tantalum and niobium at room temperature.


Sign in / Sign up

Export Citation Format

Share Document