Advanced calibration and normalization techniques for time domain reflection and transmission measurements

Author(s):  
T. Dhaene ◽  
L. Martens ◽  
K. De Kesel ◽  
D. De Zutter
2021 ◽  
Vol 36 (3) ◽  
pp. 245-251
Author(s):  
Jun Li ◽  
Huaguang Bao ◽  
Dazhi Ding

In order to evaluate scattering from hypersonic vehicles covered with the plasma efficiently, time domain volume shooting and bouncing rays (TDVSBR) is first introduced in this paper. The new method is applied to solve the transient electromagnetic scattering from complex targets, which combines with non-homogeneous dielectric and perfect electric conducting (PEC) bodies. To simplify the problem, objects are discretized into tetrahedrons with different electromagnetic parameters. Then the reflection and transmission coefficients can be obtained by using theory of electromagnetic waves propagation in lossy medium. After that, we simulate the reflection and transmission of rays in different media. At last, the scattered fields or radiation are solved by the last exiting ray from the target. Compared with frequency-domain methods, time-domain methods can obtain the wideband RCS efficiently. Several numerical results are given to demonstrate the high efficiency and accuracy of this proposed scheme.


2009 ◽  
Vol 6 (12) ◽  
pp. 2849-2851 ◽  
Author(s):  
RamuÌ„nas AdomavicÌŒius ◽  
Jan Macutkevic ◽  
Rasa SuzanovicÌŒienė ◽  
Aloyzas SÌŒiusÌŒys ◽  
Arūnas Krotkus

2008 ◽  
Vol 18 (02) ◽  
pp. 295-306 ◽  
Author(s):  
ROBERT OSIANDER ◽  
MICHAEL J. FITCH ◽  
MEGAN LEAHY-HOPPA ◽  
YAMAC DIKMELIK ◽  
JAMES B. SPICER

In the last few years, a number of researchers including our collaboration have assembled databases of terahertz (THz) time-domain spectroscopy (TDS) absorption spectra from bulk explosives. While this was a necessary and important step in demonstrating the feasibility of THz TDS for explosives detection, the goal of our research is to demonstrate selectivity of THz spectra from the clutter of background spectra coming from the substrate such as soil or sand. We have investigated THz TDS reflection spectra from sand with different grain sizes as well as from metallic powders in order to distinguish between the signals reflected from the rough surfaces compared to distributed reflections at finite depths in the granular material. With marker materials such as tartaric acid, which have absorption features in the 1-2 THz range, we have investigated the reflection spectra of granular substrates with marker chemicals, and compared this to reflection and transmission spectra of solid materials prepared in polyethylene sample pellets. In principle, the same experiments can then be performed using TNT, RDX, HMX and PETN, which all have characteristic features in the 0.5-8 THz frequency range. Absolute molecular absorption coefficients can be measured as well, and we include here preliminary values for RDX. A full analysis will be reported elsewhere.


1999 ◽  
Vol 581 ◽  
Author(s):  
M. R. Black ◽  
Y. M. Lin ◽  
M. S. Dresselhaus ◽  
M. Tachibama ◽  
S. Fang ◽  
...  

ABSTRACTThis paper develops a method to deduce the dielectric function of nanostructures smaller than the chosen wavelength of light. It modifies the Maxwell - Garnett Effective Medium Theory equations to calculate the dielectric function of a metal embedded inside a dielectric. Specifically, reflection and transmission measurements of an array of bismuth nanowires in an anodized porous alumina template are used to calculate the frequency - dependent di-electric function of the nanowires. The spectra are taken using Fourier transform infrared spectroscopy covering the 500 to 4000 cm−1 frequency range. These data are used to determine the real and imaginary parts of the dielectric function of the composite materials. Next, the percentage of the total volume occupied by either Bi or air in the porous alumina (the “filling factor”) was found by scanning electron microscopy. The modified Maxwell-Garnett (M-G) equations specify how to use the filling factor and the dielectric function of the composite material to calculate the dielectric function of the alumina. Finally, the modified M-G equations are used a second time to calculate the dielectric function of Bi nanowires using the dielectric function of alumina, the dielectric function of the filled template, and the filling factor. The resulting dielectric function of Bi nanowires is then compared to theoretical predictions.


1975 ◽  
Vol 53 (18) ◽  
pp. 1737-1742 ◽  
Author(s):  
J. H. Wohlgemuth ◽  
D. E. Brodie

A new method for determining the index of refraction from normal incidence reflection and transmission measurements has been developed. Several other methods are reviewed to explain why a new method is needed. The author's method used a thickness variational approach. For an accurate determination of n and k, the method requires normal incidence reflection and transmission measurements over a fairly broad spectral range for at least two different film thicknesses. These requirements are unavoidable for normal incidence methods.


1992 ◽  
Vol 280 ◽  
Author(s):  
M. Libera ◽  
T. Kim ◽  
K. Siangchaew ◽  
L. Clevenger ◽  
Q. Hong

ABSTRACTTime-resolved reflection and transmission measurements during heating are coupled with transmission electron microscopy (TEM) to study the crystallization of amorphous 75nm Co49Si51 films. The reflection decreases and the transmission increases upon crystallization. Optical data are converted to a measure of the fraction crystallized, χ=χ(T,t). A Kissinger analysis gives an activation energy for crystallization of 1.1 eV. TEM analysis of films crystallized in-situ show they are principally CoSi2 with a small amount of CoSi2. These results are being used for kinetic modelling of crystallization of amorphous Co-silicide films for potential use in Si mosfet and bipolar technologies.


Sign in / Sign up

Export Citation Format

Share Document