Time-Resolved Optical Studies of Amorphous CoSi Thin-Film Crystallization

1992 ◽  
Vol 280 ◽  
Author(s):  
M. Libera ◽  
T. Kim ◽  
K. Siangchaew ◽  
L. Clevenger ◽  
Q. Hong

ABSTRACTTime-resolved reflection and transmission measurements during heating are coupled with transmission electron microscopy (TEM) to study the crystallization of amorphous 75nm Co49Si51 films. The reflection decreases and the transmission increases upon crystallization. Optical data are converted to a measure of the fraction crystallized, χ=χ(T,t). A Kissinger analysis gives an activation energy for crystallization of 1.1 eV. TEM analysis of films crystallized in-situ show they are principally CoSi2 with a small amount of CoSi2. These results are being used for kinetic modelling of crystallization of amorphous Co-silicide films for potential use in Si mosfet and bipolar technologies.

2006 ◽  
Vol 505-507 ◽  
pp. 337-342 ◽  
Author(s):  
Chil Chyuan Kuo ◽  
W.C. Yeh ◽  
C.B. Chen ◽  
J.Y. Jeng

XeF excimer laser-induced melting and recrystallization of amorphous silicon was studied using in-situ online time-resolved reflection and transmission measurements with a nanosecond time resolution. The explosive crystallization was observed for 50nm thick amorphous silicon on SiO2 deposited on non-alkali glass substrate upon 25ns pulse duration of excimer laser. Three distinct regrowth regimes were found using various excimer laser fluences. Scanning electron microscopy, Raman spectroscopy and atomic force microscopy were used to evaluate the excimer laser- irradiated region of the sample. Grain size, surface roughness and melt duration as a function of different laser fluences are also determined.


1989 ◽  
Vol 160 ◽  
Author(s):  
T. L. Lin ◽  
C. W. Nieh

AbstractEpitaxial IrSi3 films have been grown on Si (111) by molecular beam epitaxy (MBE) at temperatures ranging from 630 to 800 °C and by solid phase epitaxy (SPE) at 500 °C. Good surface morphology was observed for IrSi3 layers grown by MBE at temperatures below 680 °C, and an increasing tendency to form islands is noted in samples grown at higher temperatures. Transmission electron microscopy (TEM) analysis reveals that the IrSi3 layers grow epitaxially on Si(111) with three epitaxial modes depending on the growth conditions. For IrSi3 layers grown by MBE at 630 °C, two epitaxial modes were observed with ~ 50% area coverage for each mode. Single mode epitaxial growth was achieved at a higher MBE growth temperature, but with island formation in the IrSi3 layer. A template technique was used with MBE to improve the IrSi3 surface morphology at higher growth temperatures. Furthermore, single-crystal IrSi3 was grown on Si(111) at 500 °C by SPE, with annealing performed in-situ in a TEM chamber.


2008 ◽  
Vol 8 (9) ◽  
pp. 4743-4746 ◽  
Author(s):  
Haldorai Yuvaraj ◽  
Min Hee Woo ◽  
Eun Ju Park ◽  
Yeong-Soon Gal ◽  
Kwon Taek Lim

Poly(3-octylthiophene) (P3OT)-titanium dioxide (TiO2) nanocomposite powder where TiO2 was embedded with homogeneous dispersion was synthesized by in-situ chemical oxidative polymerization of 3-octylthiophene in the presence of TiO2 nanoparticles in supercritical carbon dioxide (scCO2), using ferric chloride as the oxidant. The synthesized materials could be obtained as dry powder upon venting of CO2 after the polymerization. The composites were subsequently characterized by FT-IR spectroscopy, transmission electron microscopy (TEM), X-ray diffraction studies (XRD), thermogravimetric analysis (TGA) and photoluminescence (PL). The incorporation of TiO2 in the composite was endorsed by FT-IR studies. TGA revealed enhanced thermal stability of P3OT/TiO2 nanocomposite compared to 3-octylthiophene. TEM analysis showed that well dispersed TiO2 nanoparticles in the polymer matrix. Photoluminescence quenching increased with increasing TiO2 concentration in the composite.


2001 ◽  
Vol 90 (3) ◽  
pp. 1675-1677 ◽  
Author(s):  
K. Knechten ◽  
P. LeClair ◽  
J. T. Kohlhepp ◽  
H. J. M. Swagten ◽  
B. Koopmans ◽  
...  

MRS Bulletin ◽  
2021 ◽  
Author(s):  
Haimei Zheng

AbstractThe development of liquid cells for transmission electron microscopy has enabled breakthroughs in our ability to follow nanoscale structural, morphological, or chemical changes during materials growth and applications. Time-resolved high-resolution imaging and chemical analysis through liquids opened the opportunity to capture nanoscale dynamic processes of materials, including reaction intermediates and the transformation pathways. In this article, a series of work is highlighted with topics ranging from liquid cell developments to in situ studies of nanocrystal growth and transformations, dendrite formation, and suppression of lithium dendrites through in situ characterization of the solid–electrolyte interphase chemistry. The understanding garnered is expected to accelerate the discovery of novel materials for applications in energy storage, catalysis, sensors, and other functional devices.


1987 ◽  
Vol 115 ◽  
Author(s):  
C. L. Trybus ◽  
F. C. Laabs ◽  
A. R. Pelton ◽  
V. A. Spitzig

ABSTRACTCu-Nb in situ composites attain anomolous increases in strength upon mechanical deformation. The unique filamentary microstructures that evolve during processing (cold rolling and/or wire drawing) are the source of the strengthening. Results from transmission electron microscopy characterization studies have played a key role in the understanding of the relationships between structure and properties. However, the fabrication of reliable TEM samples has been extremely challenging for the following reasons: (1) traditional electrochemical techniques are not suitable for the two-phase microstructure, (2) preparation of longitudinal and transverse sections of fine (∼150 μm diameter wires) and thin (∼60 μm thick) sheet is tedious, and (3) it is necessary to avoid excessive heat (< 30°C) during sample preparation to preserve the metastable structural arrangements. This paper will review the procedures used to prepare TEM specimens from bulk wire and sheet samples as well as from extracted Nb filaments. Proper techniques for plating, mounting, sectioning, polishing, and ion-thinning will be discussed.


1999 ◽  
Vol 585 ◽  
Author(s):  
R. C. Birtcher ◽  
S. E. Donnelly

AbstractSputtering of Au thin films has been determined for Xe ions with energies between 50 and 600 keV. In-situ transmission electron microscopy was used to observe sputtered Au during deposition on a carbon foil near the specimen. Total reflection and transmission sputtering yields for a 62 nm thick Au thin film were determined by ex-situ measurement of the total amount of Au on the carbon foils. In situ observations show that individual Xe ions eject Au nanopanicles as large as 7 nm in diameter with an average diameter of approximately 3 nm. Particle emission correlates with crater formation due to single ion impacts. Nanoparticle emission contributes significantly to the total sputtering yield for Xe ions in this energy range in either reflection or transmission geometry.


Author(s):  
Elena Moretti ◽  
Daria Noto ◽  
Raffaella Guazzo ◽  
Andrea Menchiari ◽  
Giuseppe Belmonte ◽  
...  

Abstract Purpose To study the potential paternal contribution to aneuploidies in the man of a couple who obtained trisomic embryos with natural and assisted fertilization. Methods Semen analysis, immunofluorescence for localization of tubulin and centrin 1, transmission electron microscopy (TEM), and fluorescence in situ hybridization (FISH) analysis for chromosomes 18 and 9 were performed. Sperm of fertile men were used as controls. Results The percentages of sperm motility and normal forms were decreased. The percentages of sperm with tail reduced in dimension, headless tails, coiled tails, and altered head-tail junction were significantly higher (P < 0.01) in the patient than in controls, whereas the percentage of sperm with a normal centrin 1 localization (two spots in the centriolar area) was significantly reduced (P < 0.01) in the patient. Immunofluorescence with anti-tubulin antibody showed that in most of the patient’s sperm connecting pieces (83.00 ± 1.78%), two spots were present, indicating prominent proximal centriole/centriolar adjunct and evident distal centriole, whereas controls’ sperm displayed a single spot, indicating the proximal centriole. The percentage of sperm with two spots was significantly higher (P < 0.01) in the patient than in controls. TEM analysis showed that centriolar adjuncts of the patient’s sperm were significantly longer (721.80 ± 122.26 nm) than in controls’ sperm (310.00 ± 64.11 nm; P < 0.001). The aneuploidy frequencies of the patient’s sperm, detected by FISH analysis, were increased with respect to controls. Conclusion A paternal contribution to sperm aneuploidies cannot be excluded since the patient’s sperm showed altered morphology, immature centriolar adjunct, presence of evident distal centriole, scarce presence of centrin 1, and high aneuploidy frequency.


Sign in / Sign up

Export Citation Format

Share Document