A heuristic approach of estimation and prediction of short-circuit current of a photovoltaic cell by Kalman filter

Author(s):  
E. Mukherjee ◽  
S. Sengupta ◽  
S.P. Duttagupta
2012 ◽  
Vol 550-553 ◽  
pp. 476-479
Author(s):  
Ai Fen Wang

The three photovoltaic cells with two different anode buffer layer on the basis of Pentacene/C60 as active layer was fabicated, the effect and mechanism of anode buffer layer on performance of organic photovoltaic cell are explored. The experimental result shows transition metal oxide inserted between organic active layer and ITO could increase short circuit current and open-circuit voltage,power conversion efficiency is increased to 107%,so it is effective anode buffer material.


ACTA IMEKO ◽  
2014 ◽  
Vol 3 (4) ◽  
pp. 4 ◽  
Author(s):  
Brice Aubert ◽  
Jérémi Régnier ◽  
Stéphane Caux ◽  
Dominique Alejo

<p class="Abstract">This paper deals with an Extended Kalman Filter based fault detection for inter-turn short-circuit in Permanent Magnet Synchronous Generators. Inter-turn short-circuits are among the most critical faults in the PMSG. Indeed, due to permanent magnets, the short-circuit current is maintained as long as the machine is rotating. Thus, a specific faulty model in d-q frame is developed to estimate the number of short-circuited turns which are used to build a fault indicator. Simulation results demonstrate the sensitivity and the robustness of the proposed fault indicator against various operation points on an electrical network even for a few number of short-circuited turns.</p>


Proceedings ◽  
2020 ◽  
Vol 63 (1) ◽  
pp. 43
Author(s):  
Rachid Herbazi ◽  
Youssef Kharchouf ◽  
Khalid Amechnoue ◽  
Ahmed Khouya ◽  
Adil Chahboun

This work presents a method for extracting parameters from photovoltaic (PV) solar cells, based on the three critical points of the current-voltage (I-V) characteristic, i.e., the short-circuit current, the open circuit voltage and the maximum power point (MPP). The method is developed in the Python programming language using differential evolution (DE) and a three-point curve fitting approach. It shows a good precision with root mean square error (RMSE), for different solar cells, lower than to those cited in the literature. In addition, the method is tested based on the measurements of a solar cell in the Faculty of Science and Technology of Tangier (FSTT) laboratory, thus giving a good agreement between the measured data and those calculated (i.e., RMSE = 7.26 × 10−4) with fewer iterations for convergence.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1029 ◽  
Author(s):  
Ivan Tolić ◽  
Mario Primorac ◽  
Kruno Miličević

This paper presents measurement uncertainty propagation through four basic photovoltaic cell models: One-diode model without resistances, with one resistance and with two resistances and two-diode model with two resistances. The expressions for the output current of all photovoltaic cell models is presented as a function of global irradiance G and temperature T. Next, the expressions for all fill factor parameters: short-circuit current, open-circuit voltage, current and voltage at the maximum power point, depending on the global irradiance G and temperature T are derived as well. For each parameter, Monte Carlo simulations to calculate the measurement uncertainty of the parameter are performed and the results were used as input values for the calculation of measurement uncertainty of fill factor. Practical calculations are performed in laboratory for renewable energy sources located on 45°32′ N and 18°44′ E. Final fill factor calculations are compared for three different module technologies.


2010 ◽  
Author(s):  
H. M. Al-Hamadi ◽  
K. M. EL-Naggar ◽  
Nader Barsoum ◽  
G. W. Weber ◽  
Pandian Vasant

Author(s):  
Katsunori Hanamura ◽  
Hirofumi Fukai ◽  
Elaiyaraju Srinivasan ◽  
Masao Asano ◽  
Teppei Masuhara

Near-field radiation that has a high intensity of electric field was applied to enhance conversion from thermal energy to electricity in a wavelength range less than 1.1 μm or 1.8 μm. A commercial Si-photovoltaic cell and a thermophotovoltaic cell made of GaSb semiconductors were used to confirm that the near-field radiation effect (the evanescent wave effect) can be applied to enhance generation of electricity. As a result, an increase in output power generation of electricity by the evanescent wave effect was detected and the short-circuit current density increased about 1.3 times for the Si-PV cell and 3.0 times for the GaSb-TPV cell as larger than those obtained by the conventional propagating-wave radiation.


Author(s):  
Roland Szabo ◽  
Aurel Gontean

The aim of this work is to introduce new ways to model the I-V characteristic of a PV cell or PV module using straight lines and B&eacute;zier curves. This is a complete novel approach, B&eacute;zier curves being previously used mainly for computer graphics. The I-V characteristic is divided in three sections, modeled with lines and a quadratic B&eacute;zier curve in the first case and with three cubic B&eacute;zier curves in the second case. The result proves to be accurate and relies on the fundamental points usually present in the PV cell datasheets: Voc (the open circuit voltage), Isc (the short circuit current), Vmp (the maximum power corresponding voltage) and Imp (the maximum power corresponding current) and the parasitic resistances Rsh0 (shunt resistance at Isc) and Rs0 (series resistance at Voc). The proposed algorithm completely defines all the implied control points and the error is analyzed. The proposed method is validated for different temperatures and irradiances. The model is finally compared and validated using the least squares fitting method.


Sign in / Sign up

Export Citation Format

Share Document