scholarly journals MegaSense: Feasibility of Low-Cost Sensors for Pollution Hot-spot Detection

Author(s):  
Eemil Lagerspetz ◽  
Sasu Tarkoma ◽  
Tareq Hussein ◽  
Naser Hossein Motlagh ◽  
Martha Arbayani Zaidan ◽  
...  
Keyword(s):  
Hot Spot ◽  
Low Cost ◽  
Author(s):  
S. Ferrier

Abstract Three enhancements to Liquid Crystal hot spot detection improve thermal and optical sensitivity while substantially maintaining simplicity, safety and relative low cost. These enhancements have permitted detection of hot spots unidentifiable by traditional LC methods. Details, capabilities and limitations of the enhancements are discussed, results of rudimentary defect thermal modeling are presented, and an improved metric for evaluating LC technique sensitivity is proposed.


Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 256
Author(s):  
Pengfei Han ◽  
Han Mei ◽  
Di Liu ◽  
Ning Zeng ◽  
Xiao Tang ◽  
...  

Pollutant gases, such as CO, NO2, O3, and SO2 affect human health, and low-cost sensors are an important complement to regulatory-grade instruments in pollutant monitoring. Previous studies focused on one or several species, while comprehensive assessments of multiple sensors remain limited. We conducted a 12-month field evaluation of four Alphasense sensors in Beijing and used single linear regression (SLR), multiple linear regression (MLR), random forest regressor (RFR), and neural network (long short-term memory (LSTM)) methods to calibrate and validate the measurements with nearby reference measurements from national monitoring stations. For performances, CO > O3 > NO2 > SO2 for the coefficient of determination (R2) and root mean square error (RMSE). The MLR did not increase the R2 after considering the temperature and relative humidity influences compared with the SLR (with R2 remaining at approximately 0.6 for O3 and 0.4 for NO2). However, the RFR and LSTM models significantly increased the O3, NO2, and SO2 performances, with the R2 increasing from 0.3–0.5 to >0.7 for O3 and NO2, and the RMSE decreasing from 20.4 to 13.2 ppb for NO2. For the SLR, there were relatively larger biases, while the LSTMs maintained a close mean relative bias of approximately zero (e.g., <5% for O3 and NO2), indicating that these sensors combined with the LSTMs are suitable for hot spot detection. We highlight that the performance of LSTM is better than that of random forest and linear methods. This study assessed four electrochemical air quality sensors and different calibration models, and the methodology and results can benefit assessments of other low-cost sensors.


Author(s):  
Rami F. Salem ◽  
Ahmed Arafa ◽  
Sherif Hany ◽  
Abdelrahman ElMously ◽  
Haitham Eissa ◽  
...  

2021 ◽  
Author(s):  
Hongxia Qian ◽  
Zhifeng Liu ◽  
Zhengang Guo ◽  
Mengnan Ruan ◽  
Weiguo Yan

Investigating high-efficiency, low-cost and abundant photoelectrode materials has always been a hot spot for researchers to attention in photoelectrochemical (PEC) system. Here we firstly study the PEC performance of ternary...


2011 ◽  
Author(s):  
Hongbo Zhang ◽  
Yuelin Du ◽  
Martin D. F. Wong ◽  
Rasit O. Topaloglu

2019 ◽  
Vol 11 (6) ◽  
pp. 669 ◽  
Author(s):  
Valerio Lombardo ◽  
Stefano Corradini ◽  
Massimo Musacchio ◽  
Malvina Silvestri ◽  
Jacopo Taddeucci

The high temporal resolution of the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instrument aboard Meteosat Second Generation (MSG) provides the opportunity to investigate eruptive processes and discriminate different styles of volcanic activity. To this goal, a new detection method based on the wavelet transform of SEVIRI infrared data is proposed. A statistical analysis is performed on wavelet smoothed data derived from SEVIRI Mid-Infrared( MIR) radiances collected from 2011 to 2017 on Mt Etna (Italy) volcano. Time-series analysis of the kurtosis of the radiance distribution allows for reliable hot-spot detection and precise timing of the start and end of eruptive events. Combined kurtosis and gradient trends allow for discrimination of the different activity styles of the volcano, from effusive lava flow, through Strombolian explosions, to paroxysmal fountaining. The same data also allow for the prediction, at the onset of an eruption, of what will be its dominant eruptive style at later stages. The results obtained have been validated against ground-based and literature data.


Sign in / Sign up

Export Citation Format

Share Document