strombolian explosions
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 10)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
S. De Angelis ◽  
L. Zuccarello ◽  
S. Rapisarda ◽  
V. Minio

AbstractVolcanic activity represents a hazard to population and infrastructure worldwide. The study of acoustic waves in the atmosphere by volcanic activity is growing in popularity as an effective tool to monitor and understand the mechanisms of eruptions. In 2019, we deployed two 6-element infrasound arrays at Mt. Etna, Italy, one of the most active volcanoes in the world. Our experiment captured a range of acoustic signals associated with diverse activity ranging from background degassing to energetic Strombolian explosions, lava flows, and atmospheric injection of volcanic ash. Here, we present a description of this valuable, publicly available, research dataset. We document the design and scope of the experiment, report on data availability, and present a brief summary of the activity observed at Mt. Etna during our deployment aiming to facilitate future use of these valuable data. This dataset is the first example of open data from a multiple infrasound array experiment at Mt. Etna and one of the few available globally.


2021 ◽  
Vol 559 ◽  
pp. 116761
Author(s):  
A. Caracciolo ◽  
L. Gurioli ◽  
P. Marianelli ◽  
J. Bernard ◽  
A. Harris

2021 ◽  
Author(s):  
Martha Gabriela Gómez Vasconcelos ◽  
José Luis Macías ◽  
Denis Ramón Avellán ◽  
Giovanni Sosa-Ceballos ◽  
Víctor Hugo Garduño-Monroy

<p>Aligned volcanism is very common in many monogenetic volcanic fields around the world, which can reveal volcano-tectonic interactions at different scales. For instance, volcanic distribution discloses the tectonic stress orientation on regional scales. On more local scales, preexisting faults or fractures may control magma intrusions and their propagation through the upper crust, as faults are zones of crustal weakness that magma intrusions can intercept during its ascent, partly controlling the volcanic vent spatial distribution. But it is not quite understood how do these alignments occur; if they erupted at the same time (within a few dozens of years), if they erupted during a short time interval (hundreds of years) or during a long time interval (thousands of years); if the eruptive style and magma volumes are controlled by these faults and the regional tectonic stress regime, etc.</p><p>This study aims to understand the magmatic and structural conditions that favored the emission of a lava plateau followed by Strombolian explosions that built 13 aligned and six dispersed scoria cones through preexisting E-W– to ENE-striking faults in the Queréndaro area. Our results indicate that volcanism in the Michoacán-Guanajuato Volcanic Field occurs as intermittent magma fluxes, sometimes represented by independent volcanic vents and sometimes by clustered or aligned volcanoes. Moreover, preexisting faults exert a strong influence on volcanic spatial and temporal distribution, volcanic morphology, magma volume, and eruptive dynamics in this area.</p>


2021 ◽  
Vol 13 (5) ◽  
pp. 944
Author(s):  
Sonia Calvari ◽  
Flora Giudicepietro ◽  
Federico Di Traglia ◽  
Alessandro Bonaccorso ◽  
Giovanni Macedonio ◽  
...  

Strombolian activity varies in magnitude and intensity and may evolve into a threat for the local populations living on volcanoes with persistent or semi-persistent activity. A key example comes from the activity of Stromboli volcano (Italy). The “ordinary” Strombolian activity, consisting in intermittent ejection of bombs and lapilli around the eruptive vents, is sometimes interrupted by high-energy explosive events (locally called major or paroxysmal explosions), which can affect very large areas. Recently, the 3 July 2019 explosive paroxysm at Stromboli volcano caused serious concerns in the local population and media, having killed one tourist while hiking on the volcano. Major explosions, albeit not endangering inhabited areas, often produce a fallout of bombs and lapilli in zones frequented by tourists. Despite this, the classification of Strombolian explosions on the basis of their intensity derives from measurements that are not always replicable (i.e., field surveys). Hence the need for a fast, objective and quantitative classification of explosive activity. Here, we use images of the monitoring camera network, seismicity and ground deformation data, to characterize and distinguish paroxysms, impacting the whole island, from major explosions, that affect the summit of the volcano above 500 m elevation, and from the persistent, mild explosive activity that normally has no impact on the local population. This analysis comprises 12 explosive events occurring at Stromboli after 25 June 2019 and is updated to 6 December 2020.


2020 ◽  
Vol 12 (17) ◽  
pp. 2703
Author(s):  
Tehnuka Ilanko ◽  
Tom D Pering ◽  
Thomas Charles Wilkes ◽  
Julia Woitischek ◽  
Roberto D’Aleo ◽  
...  

Here, we present the first ultraviolet (UV) camera measurements of sulphur dioxide (SO2) flux from Yasur volcano, Vanuatu, for the period 6–9 July 2018. These data yield the first direct gas-measurement-derived calculations of explosion gas masses at Yasur. Yasur typically exhibits persistent passive gas release interspersed with frequent Strombolian explosions. We used compact forms of the “PiCam” Raspberry Pi UV camera system powered through solar panels to collect images. Our daily median SO2 fluxes ranged from 4 to 5.1 kg s−1, with a measurement uncertainty of −12.2% to +14.7%, including errors from the gas cell calibration drift, uncertainties in plume direction and distance, and errors from the plume velocity. This work highlights the use of particle image velocimetry (PIV) for plume velocity determination, which was preferred over the typically used cross-correlation and optical flow methods because of the ability to function over a variety of plume conditions. We calculated SO2 masses for Strombolian explosions ranging 8–81 kg (mean of 32 kg), which to our knowledge is the first budget of explosive gas masses from this target. Through the use of a simple statistical measure using the moving minimum, we estimated that passive degassing is the dominant mode of gas emission at Yasur, supplying an average of ~69% of the total gas released. Our work further highlights the utility of UV camera measurements in volcanology, and particularly the benefit of the multiple camera approach in error characterisation. This work also adds to our inventory of gas-based data, which can be used to characterise the spectrum of Strombolian activity across the globe.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
T. D. Pering ◽  
E. J. Liu ◽  
K. Wood ◽  
T. C. Wilkes ◽  
A. Aiuppa ◽  
...  

Abstract Volcanoes with multiple summit vents present a methodological challenge for determining vent-specific gas emissions. Here, using a novel approach combining multiple ultraviolet cameras with synchronous aerial measurements, we calculate vent-specific gas compositions and fluxes for Stromboli volcano. Emissions from vent areas are spatially heterogeneous in composition and emission rate, with the central vent area dominating passive emissions, despite exhibiting the least explosive behaviour. Vents exhibiting Strombolian explosions emit low to negligible passive fluxes and are CO2-dominated, even during passive degassing. We propose a model for the conduit system based on contrasting rheological properties between vent areas. Our methodology has advantages for resolving contrasting outgassing dynamics given that measured bulk plume compositions are often intermediate between those of the distinct vent areas. We therefore emphasise the need for a vent-specific approach at multi-vent volcanoes and suggest that our approach could provide a transformative advance in volcano monitoring applications.


2019 ◽  
Vol 11 (6) ◽  
pp. 669 ◽  
Author(s):  
Valerio Lombardo ◽  
Stefano Corradini ◽  
Massimo Musacchio ◽  
Malvina Silvestri ◽  
Jacopo Taddeucci

The high temporal resolution of the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instrument aboard Meteosat Second Generation (MSG) provides the opportunity to investigate eruptive processes and discriminate different styles of volcanic activity. To this goal, a new detection method based on the wavelet transform of SEVIRI infrared data is proposed. A statistical analysis is performed on wavelet smoothed data derived from SEVIRI Mid-Infrared( MIR) radiances collected from 2011 to 2017 on Mt Etna (Italy) volcano. Time-series analysis of the kurtosis of the radiance distribution allows for reliable hot-spot detection and precise timing of the start and end of eruptive events. Combined kurtosis and gradient trends allow for discrimination of the different activity styles of the volcano, from effusive lava flow, through Strombolian explosions, to paroxysmal fountaining. The same data also allow for the prediction, at the onset of an eruption, of what will be its dominant eruptive style at later stages. The results obtained have been validated against ground-based and literature data.


2019 ◽  
Vol 71 (1) ◽  
Author(s):  
Kyoka Ishii ◽  
Akihiko Yokoo ◽  
Tsuneomi Kagiyama ◽  
Takahiro Ohkura ◽  
Shin Yoshikawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document