A Simple Antiswing Input Shaper for Dual Boom Cranes

Author(s):  
Zehao Qiu ◽  
Yu Fu ◽  
Huawang Liu ◽  
Ning Sun ◽  
Yongchun Fang ◽  
...  
Keyword(s):  
Automatica ◽  
2020 ◽  
Vol 121 ◽  
pp. 109202
Author(s):  
Martin Goubej ◽  
Tomáš Vyhlídal ◽  
Miloš Schlegel

Author(s):  
Ahmad Alhassan ◽  
Kumeresan A. Danapalasingam ◽  
Muhammad Shehu ◽  
Auwalu M. Abdullahi ◽  
Auwal Shehu
Keyword(s):  

2006 ◽  
Vol 77 (1) ◽  
pp. 63-71 ◽  
Author(s):  
Sırrı Sunay Gürleyük

Author(s):  
Jinhua She ◽  
Lulu Wu ◽  
Zhen-Tao Liu ◽  
◽  
◽  
...  

Vibration suppression in servo systems is significant in high-precision motion control. This paper describes a vibration-suppression method based on input shaping and adaptive model-following control. First, a zero vibration input shaper is used to suppress the vibration caused by an elastic load to obtain an ideal position output. Then, a configuration that combines input shaping with model-following control is developed to suppress the vibration caused by changes of system parameters. Finally, analyzing the percentage residual vibration reveals that it is effective to employ the sum of squared position error as a criterion. Additionally, a golden-section search is used to adjust the parameters of a compensator in an online fashion to adapt to the changes in the vibration frequency. A comparison with other input shaper methods shows the effectiveness and superiority of the developed method.


Author(s):  
Withit Chatlatanagulchai ◽  
Ittidej Moonmangmee ◽  
Pisit Intarawirat

Input shaping suppresses residual vibration by destructive interference of the impulse responses. Because proper destructive interference requires superposition property of the linear system, traditional input shaper only applies to the linear flexible system. In this paper, the work and energy principle is used to derive input shaper for flexible system having nonlinear spring and damper. It was shown via simulation and experiment that this type of shaper performs well with nonlinear systems. Positive, robust, and negative input shapers are discussed.


2021 ◽  
pp. 107754632110546
Author(s):  
Abdulaziz Al-Fadhli ◽  
Emad Khorshid

This paper presents a smooth command (SC) input shaper for suppressing payload oscillations in rest-to-rest simultaneous radial and tangential motions of a tower crane. The radial and tangential acceleration profiles of the compound motions are represented by multi-sine wave functions with independent and variable maneuvering time. The proposed SC is designed using a nonlinear mathematical model of the tower crane while the parameters of the acceleration profiles and maneuvering times were optimized using a particle swarm algorithm (PSO). The simulated results were verified experimentally on a laboratory scale tower crane. The results confirm that the proposed SC input effectively canceled residual vibrations of the payload compound motions with a time length comparable to zero vibrations (ZV) shaper. Moreover, sensitivity analysis to variations in cable length reveals that the proposed command input is robust over a wide range of cable lengths.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Jin-yong Ju ◽  
Wei Li ◽  
Yufei Liu ◽  
Chunrui Zhang

The problem of the elastic vibration control for a translational flexible manipulator system (TFMS) under variable load conditions is studied. The input shaper can effectively filter out the vibration excitation components for the flexible manipulator in the driving signals, but the adaptability and rapidity of the conventional input shaper are poor because it is essentially an open-loop control mode and there are time-lag links inevitably. Thus, by combining the state feedback with the input shaping, a master-slave integrated controller of the TFMS is proposed. Moreover, in order to solve the time-lag effect of the conventional input shaper, based on the optimal algorithm, a two-mode vibration cascade shaper for the TFMS is designed. Then, under variable load conditions, the control effects of the conventional input shapers, the two-mode vibration cascade shaper, and the combination of the state feedback integral controller (SFIC) with the above shapers are investigated. The results show that the designed master-slave integrated controller has high robustness under variable load conditions and takes good account of the requirements of system response time and overshoot for achieving the goal of nonovershoot under fast response speed. Simulation experiment results verify the effectiveness of the designed controller.


Sign in / Sign up

Export Citation Format

Share Document