Assessing Ontology Alignment Quality - Analysis and Recommendations

Author(s):  
Tatyana Ivanova Ivanova
Author(s):  
Jennifer Sampson ◽  
John Krogstie ◽  
Csaba Veres

Recently semantic web technologies, such as ontologies, have been proposed as key enablers for integrating heterogeneous data schemas in business and governmental systems. Algorithms designed to align different but related ontologies have become necessary as differing ontologies proliferate. The process of ontology alignment seeks to find corresponding entities in a second ontology with the same or the closest meaning for each entity in a single ontology. This research is motivated by the need to provide tools and techniques to support the task of validating ontology alignment statements, since it cannot be guaranteed that the results from automated tools are accurate. The authors present a framework for understanding ontology alignment quality and describe how AlViz, a tool for visual ontology alignment, may be used to improve the quality of alignment results. An experiment was undertaken to test the claim that AlViz supports the task of validating ontology alignments. A promising result found that the tool has potential for identifying missing alignments and for rejecting false alignments.


Author(s):  
Jennifer Sampson ◽  
John Krogstie ◽  
Csaba Veres

Recently semantic web technologies, such as ontologies, have been proposed as key enablers for integrating heterogeneous data schemas in business and governmental systems. Algorithms designed to align different but related ontologies have become necessary as differing ontologies proliferate. The process of ontology alignment seeks to find corresponding entities in a second ontology with the same or the closest meaning for each entity in a single ontology. This research is motivated by the need to provide tools and techniques to support the task of validating ontology alignment statements, since it cannot be guaranteed that the results from automated tools are accurate. The authors present a framework for understanding ontology alignment quality and describe how AlViz, a tool for visual ontology alignment, may be used to improve the quality of alignment results. An experiment was undertaken to test the claim that AlViz supports the task of validating ontology alignments. A promising result found that the tool has potential for identifying missing alignments and for rejecting false alignments.


Author(s):  
José Manuel Vázquez Naya ◽  
Marcos Martínez Romero ◽  
Javier Pereira Loureiro ◽  
Cristian R. Munteanu ◽  
Alejandro Pazos Sierra

Ontology alignment is recognized as a fundamental process to achieve an adequate interoperability between people or systems that use different, overlapping ontologies to represent common knowledge. This process consists of finding the semantic relations between different ontologies. There are different techniques conceived to measure the semantic similarity of elements from separate ontologies, which must be adequately combined in order to obtain precise and complete results. Nevertheless, combining multiple measures into a single similarity metric is a complex problem, which has been traditionally solved using weights determined manually by an expert, or calculated through general methods that does not provide optimal results. In this chapter, a genetic algorithm based approach to find out how to aggregate different similarity metrics into a single measure is presented. Starting from an initial population of individuals, each one representing a specific combination of measures, the algorithm finds the combination that provides the best alignment quality.


2016 ◽  
Vol 2016 (1) ◽  
pp. 111-116 ◽  
Author(s):  
Dietmar Wueller ◽  
Ulla Bøgvad Kejser

2020 ◽  
Vol 64 (2) ◽  
pp. 20503-1-20503-5
Author(s):  
Faiz Wali ◽  
Shenghao Wang ◽  
Ji Li ◽  
Jianheng Huang ◽  
Yaohu Lei ◽  
...  

Abstract Grating-based x-ray phase-contrast imaging has the potential to enhance image quality and provide inner structure details non-destructively. In this work, using grating-based x-ray phase-contrast imaging system and employing integrating-bucket method, the quantitative expressions of signal-to-noise ratios due to photon statistics and mechanical error are analyzed in detail. Photon statistical noise and mechanical error are the main sources affecting the image noise in x-ray grating interferometry. Integrating-bucket method is a new phase extraction method translated to x-ray grating interferometry; hence, its image quality analysis would be of great importance to get high-quality phase image. The authors’ conclusions provide an alternate method to get high-quality refraction signal using grating interferometer, and hence increases applicability of grating interferometry in preclinical and clinical usage.


Sign in / Sign up

Export Citation Format

Share Document