Investigation of the output current and its applications for the multiphase buck converter

Intelec 2012 ◽  
2012 ◽  
Author(s):  
Saijun Zhang ◽  
Xiaoyan Yu ◽  
Dai Qi
Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 64
Author(s):  
Chien-Chun Huang ◽  
Yu-Chen Liu ◽  
Chia-Ching Lin ◽  
Chih-Yu Ni ◽  
Huang-Jen Chiu

To balance the cost and volume when applying a low output current ripple, the power supply design should be able to eliminate the current ripple under any duty cycle in medium and high switching frequencies, and considerably reduce filter volume to improve power density. A stacked buck converter was eventually selected after reviewing the existing solutions and discussing their advantages and disadvantages. A stacked buck converter is used as a basis to propose the transient response and output current ripple elimination effect, boundary limit control method, and low output ripple dead time modulation method to make individual improvements. The principle, mathematical derivation, small-signal model, and compensator design method of the improvement method are presented in detail. Moreover, simulation results are used to mutually verify the correctness and effectiveness of the improvement method. A stacked buck converter with 330-V input, 50-V output, and 1-kW output power was implemented to verify the effect of the low output current ripple dead time modulation. Experimental results showed that the peak-to-peak value of the output current ripple was reduced from 2.09 A to 559 mA, and the RMS value was reduced from 551 mA to 91 mA, thereby effectively improving the output current ripple.


Author(s):  
Jose M. Sosa ◽  
P.R. Martinez-Rodriguez ◽  
G. Escobar ◽  
J.C. Nava-Cruz ◽  
C.A. Limones-Pozos

Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1370
Author(s):  
Naghmash Ali ◽  
Zhizhen Liu ◽  
Yanjin Hou ◽  
Hammad Armghan ◽  
Xiaozhao Wei ◽  
...  

Compared to the plug-in charging system, Wireless power transfer (WPT) is simpler, reliable, and user-friendly. Resonant inductive coupling based WPT is the technology that promises to replace the plug-in charging system. It is desired that the WPT system should provide regulated current and power with high efficiency. Due to the instability in the connected load, the system output current, power, and efficiency vary. To solve this issue, a buck converter is implemented on the secondary side of the WPT system, which adjusts its internal resistance by altering its duty cycle. To control the duty cycle of the buck converter, a discrete fast terminal sliding mode controller is proposed to regulate the system output current and power with optimal efficiency. The proposed WPT system uses the LCC-S compensation topology to ensure a constant output voltage at the input of the buck converter. The LCC-S topology is analyzed using the two-port network theory, and governing equations are derived to achieve the maximum efficiency point. Based on the analysis, the proposed controller is used to track the maximum efficiency point by tracking an optimal power point. An ultra-capacitor is connected as the system load, and based on its charging characteristics, an optimal charging strategy is devised. The performance of the proposed system is tested under the MATLAB/Simulink platform. Comparison with the conventionally used PID and sliding mode controller under sudden variations in the connected load is presented and discussed. An experimental prototype is built to validate the effectiveness of the proposed controller.


2019 ◽  
Vol 27 (2) ◽  
pp. 194-206
Author(s):  
Ismael Khaleel Murad

In this paper both synchronous and asynchronous buck-converter were designed to work in continuous conduction mode “CCM” and to deliver small load current. Then the two topologies were tested in terms of efficiency at small load current by use of  different values of switching frequencies (range from 150 KHz to 1MHz) and three separated values of duty-cycle (0.4, 0.6 and 0.8).   Obtained results turns out that efficiency of both synchronous and asynchronous buck-converter “switching step-down voltage regulator” responds in a negative manner to the increase in the switching frequency. However, this impact is being stronger in synchronous topology because of magnifying effect of losses related to switching frequency compared to those related to conduction when working at small load currents; this behavior makes obtained efficiency of both topologies in convergent levels when they operated to deliver small output current especially when working with higher switching frequencies. Larger duty-cycle can rise up the efficiency of both topologies.


2014 ◽  
Vol 2014 (HITEC) ◽  
pp. 000022-000027
Author(s):  
Daniel T. Goff ◽  
Steve J. A. Majerus ◽  
Walter Merrill

A high temperature (>200 °C), quad-output, buck type switched-mode power supply (SMPS) IC capable of operating over a wide input supply range of 6 V to 15 V is described. The IC is a compact power supply solution for multi-voltage microprocessors, sensors, and actuators. The SMPS topology is a 112 kHz fixed-frequency, synchronous buck converter with slope compensation. A novel internal feedback design enables the output voltages to be pin-programmed to one of three common supply voltages—5 V, 3.3 V, or 1.8 V—while an external resistor divider can also be used for arbitrary voltage programming. Integrated power supply output MOSFET switches minimize the external part count and synchronous rectification reduces power dissipation and improves current capacity. The IC was fabricated in a conventional, low-cost, 0.5 μm bulk CMOS foundry process. Patented circuit design techniques allow the IC to operate in excess of 200 °C and circuit operation was demonstrated at ambient temperatures up to 225 °C. The foundry process is optimized for 5 V applications, however, the IC accepts input voltages up to 15 V and can produce outputs up to 10 V by utilizing extended drain single- and double-sided NMOS and PMOS transistors for the linear regulator pass transistor, error amplifier, and SMPS switches. The high-side FETs are controlled through capacitive coupled level shift circuits to ensure the gate-oxide voltage limits are not exceeded while still maintaining fast signal transitions. The IC also includes a tunable, 25 MHz monolithic oscillator that is programmable over a SPI serial interface. The oscillator bias current is comprised of a programmable constant-gm bias current and a programmable PTAT bias current. The programmability can be used to set the oscillation frequency, but can also be used together with a calibration curve on a microcontroller to achieve a more stable oscillation frequency over temperature. The output current of the quad SMPS was limited to 70 mA by a lower than expected saturation current of the extended-drain PMOS switch devices. The system showed good line regulation (<0.1%) and 50% load step response stability (+/− 100 mV) at a nominal output current of 50 mA when tested at 200 °C ambient.


Author(s):  
Indhana Sudiharto ◽  
Moch. Igam Rahadyan ◽  
Ony Asrarul Qudsi

This research presents a battery charger design that can charge faster than using a PWM type solar charge controller (SCC). SCC is often operated when the battery capacity is 80% so that the charging current that can be provided is only 10% to 20% of the battery capacity. The battery charging method applied in this study uses the principle of fast charging by adjusting the value of the current and the output voltage value of the buck converter. Fast charging has its own characteristic, obviously, the charging rate that is greater than the usual charging method, which is up to 1C of the battery capacity. The principle of fast charging in this study uses the constant current / constant voltage method. This converter is designed with the ability to produce current by the charging rate of 1C from a 12Ah battery capacity of 12 A and an output voltage of 16.8 V. To ensure that the output of the converter matches the setpoint, the duty cycle value is adjusted using fuzzy control. Based on the results obtained from the simulation, the control of this study obtained an output current 12  Amperes with error ripple current around 8.3%. The SOC on this battery increased by 75.74% in 45 minutes.


Sign in / Sign up

Export Citation Format

Share Document