Comparison of ICT equipment air-intake temperatures between cold aisle containment and hot aisle containment in datacenters

Author(s):  
Akihiro Tsuda ◽  
Yosuke Mino ◽  
Shun Nishimura
Author(s):  
О. Д. Донець ◽  
В. П. Іщук

The basic results of calculation and research works carried out in the process of creation of power unit of regional passenger airplanes’ family are given. The design features of the propulsion engines and engine of the auxiliary power plant are described. The aforementioned propulsion system includes propulsion engines D-436-148 and engine AI-450-MS of auxiliary power plant. In order to comply with the requirements of Section 4 of the ICAO standard (noise reduction of the aircraft in site), in part of ensuring the noise reduction of engines, when creating the power plant of the An-148/An-158 aircraft family, a single- and double-layer acoustic filler was used in the structure of the engine nacelle and air intake. The use of electronic system for automatic control of propulsion engines such as FADEC and its integration into the digital airborne aircraft complex ensured the operation of engines, included in the power plant provided with high specific fuel consumption, as well as increased the level of automation of the power plant control and monitoring, and ensured aircraft automation landing in ICAO category 3A. In addition, the use of the aforementioned electronic system, allowed to operate the power plant of the aircraft in accordance with technical status. The use of the AI-450-MS auxiliary power plant with an electronic control system such as FADEC, and the drive of the service compressor from a free turbine, eliminated the effect of changes in power and air takeoff, on the deviation of the engine from optimal mode, which also minimized the fuel consumption. The use of fuel metering system TIS-158, allowed to ensure control of its condition and assemblies, without the use of auxiliary devices, built-in control means. In the fire protection system, the use of the electronic control and monitor unit, as well as the use of digital serial code for the exchange of information between the elements of the system and the aircraft systems, has reduced the number of connections, which increased the reliability of the system and reduced its weight characteristics.


Author(s):  
N.S. Mustafa ◽  
N.H.A. Ngadiman ◽  
M.A. Abas ◽  
M.Y. Noordin

Fuel price crisis has caused people to demand a car that is having a low fuel consumption without compromising the engine performance. Designing a naturally aspirated engine which can enhance engine performance and fuel efficiency requires optimisation processes on air intake system components. Hence, this study intends to carry out the optimisation process on the air intake system and airbox geometry. The parameters that have high influence on the design of an airbox geometry was determined by using AVL Boost software which simulated the automobile engine. The optimisation of the parameters was done by using Design Expert which adopted the Box-Behnken analysis technique. The result that was obtained from the study are optimised diameter of inlet/snorkel, volume of airbox, diameter of throttle body and length of intake runner are 81.07 mm, 1.04 L, 44.63 mm and 425 mm, respectively. By using these parameters values, the maximum engine performance and minimum fuel consumption are 93.3732 Nm and 21.3695×10-4 kg/s, respectively. This study has fully accomplished its aim to determine the significant parameters that influenced the performance of airbox and optimised the parameters so that a high engine performance and fuel efficiency can be produced. The success of this study can contribute to a better design of an airbox.


Author(s):  
Vyacheslav Antonovich Bashkin ◽  
Ivan V. Egorov
Keyword(s):  

2021 ◽  
Vol 104 (1) ◽  
pp. 003685042110052
Author(s):  
Xia Hua ◽  
Alan Thomas ◽  
Kurt Shultis

As battery electric vehicle (BEV) market share grows so must our understanding of the noise, vibration, and harshness (NVH) phenomenon found inside the BEVs which makes this technological revolution possible. Similar to the conventional vehicle having encountered numerous NVH issues until today, BEV has to face many new and tough NVH issues. For example, conventional vehicles are powered by the internal combustion engine (ICE) which is the dominant noise source. The noises from other sources were generally masked by the combustion engine, thus the research focus was on the reduction of combustion engine while less attention was paid to noises from other sources. A BEV does not have ICE, automatic transmission, transfer case, fuel tank, air intake, or exhaust systems. In their place, there is more than enough space to accommodate the electric drive unit and battery pack. BEV is quieter without a combustion engine, however, the research on vehicle NVH is even more significant since the elimination of the combustion engine would expose many noise behaviors of BEV that were previously ignored but would now seem clearly audible and annoying. Researches have recently been conducted on the NVH of BEV mainly emphasis on the reduction of noise induced by powertrain, tire, wind and ancillary system and the improvement of sound quality. This review paper will focus on recent progress in BEV NVH research to advance the BEV systems in the future. It is a review for theoretical, computational, and experimental work conducted by both academia and industry in the past few years.


2021 ◽  
pp. 1420326X2110160
Author(s):  
Kai Yip Lee ◽  
Cheuk Ming Mak

This study investigated effects of incident wind angles on wind velocity distributions in wakes of two generic building configurations, namely, ‘T’- and ‘+’-shaped, and the air pressure distributions along their leeward walls by using computational fluid dynamics simulations. Results show that when the wind approaches laterally (90°) (vs. when the wind is direct (0°)), the downwind length and maximum bilateral width of the low-wind velocity zone in the wake of ‘T’-shaped building decrease by 11.5% and 37.9%, respectively. When the incident wind is oblique (45°) (vs. when it is direct), the length and width of this low-wind velocity zone in the wake of ‘+’-shaped building decrease by 15.0% and 30.9%, respectively. Furthermore, results show that the air pressure on the leeward walls of the ‘T’- and ‘+’-shaped buildings gradually decreases along with the building height. The resulting low-wind conditions on upper floors of buildings reduce the fresh air intake of their leeward units utilizing natural ventilation. It is particularly apparent in the case of direct approaching wind. Thus, the appropriate selection of building configurations and their orientations allows for the most effective use of wind to enhance ventilation in indoor and urban environments.


Sign in / Sign up

Export Citation Format

Share Document