Power Factor Correction Control Based on Internet of Things Using Lumped Compensation Capacitor Bank

Author(s):  
Arin Juan Sari ◽  
M. Ary Murti ◽  
Ig. Prasetya Dwi W
2021 ◽  
Vol 1916 (1) ◽  
pp. 012140
Author(s):  
M Shanmugapriya ◽  
Aarim C Sijini ◽  
V T Srinivas ◽  
M Karthick ◽  
S Pavan

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
M.M.P.M Fernando ◽  
D.D.A Gamini ◽  
J.A.L Naveendra

Electricity is the primary source of power in most countries including Sri Lanka, and saving or minimising the waste of it has become crucial in facing the world power crisis. Electrical power is wasted in various ways including reactive power waste due to induction and capacitance of appliances, and standby power loss. These two contribute most to the waste. This paper focuses on reducing the reactive power waste of inductive electrical appliances commonly used in home and office by increasing the power factor. An attempt was made to reduce the power waste of inductive electrical appliances by connecting a capacitor bank with a variable capacitance in parallel with the appliance. Optimal capacitance and the power factor are determined using the capacitor bank. Results indicate about 30 percent of power saving could be achieved for fluorescent tube lamps using a power factor correction. A maximum power factor of 0.93 is achieved at the capacitance value of 2.99 F. It is not possible, by this method, to increase the power factor of more capacitive equipment such as CFL bulbs and ceiling fans. In this case, power minimisation could be tried connecting inductors in parallel with the equipment. Power factor and power consumption of home electrical appliances were measured for advising the general public of high power consuming equipment, especially in stand-by mode. To attain a further reduction of power waste it is proposed to measure inductance, capacitance and resistance of appliances using Hendry, Farad and Ohm meter. Total impedance can then be calculated and the power waste could be minimised using appropriate capacitors and/or inductors. Keywords: reactive power, power factor, power waste, reactive power waste, power minimisation


Author(s):  
Ch . Varun

In this proposed system, two zero crossing detectors are used for detecting zero crossing of voltage and current. The project is meant to attenuate penalty for industrial units using automatic power factor correction unit. The microcontroller utilized during this project belongs to 8051 family. The interruption between the zero-voltage pulse and zero-current pulse is duly generated by suitable operational amplifier circuits in comparator mode is fed to 2 interrupt pins of a microcontroller. The program takes over to actuate appropriate number of relays from its output to bring shunt capacitors into load circuit to urge the facility factor till it reaches near unity. The capacitor bank and relays are interfaced to the microcontroller employing a relay driver. It displays delay between this and voltage on an LCD. Furthermore, the project is enhanced by using thyristor control switches rather than relay control to avoid contact pitting often encountered by switching of capacitors because of high in rush current.


Sign in / Sign up

Export Citation Format

Share Document