scholarly journals Grid-Connected Photovoltaic System with Active Power Filtering Functionality

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Joaquín Vaquero ◽  
Nimrod Vázquez ◽  
Ivan Soriano ◽  
Jeziel Vázquez

Solar panels are an attractive and growing source of renewable energy in commercial and residential applications. Its use connected to the grid by means of a power converter results in a grid-connected photovoltaic system. In order to optimize this system, it is interesting to integrate several functionalities into the power converter, such as active power filtering and power factor correction. Nonlinear loads connected to the grid generate current harmonics, which deteriorates the mains power quality. Active power filters can compensate these current harmonics. A photovoltaic system with added harmonic compensation and power factor correction capabilities is proposed in this paper. A sliding mode controller is employed to control the power converter, implemented on the CompactRIO digital platform from National Instruments Corporation, allowing user friendly operation and easy tuning. The power system consists of two stages, a DC/DC boost converter and a single-phase inverter, and it is able to inject active power into the grid while compensating the current harmonics generated by nonlinear loads at the point of common coupling. The operation, design, simulation, and experimental results for the proposed system are discussed.

Author(s):  
PRADEEP KUMAR ◽  
P.R. SHARMA ◽  
ASHOK KUMAR

With the increasing demand for power from the ac line and more stringent limits for power quality, power factor correction has gained great attention in recent years. A variety of circuit topologies and control methods have been developed for the PFC application. International Standards in the area of compliance of a product’s AC mains current harmonics have forced that new power supply design must include the power factor correction at the front end. The new trend in Power Supply is towards the digital control. This paper discusses the design of a controller for Power Factor Correction (PFC). A microcontroller based PFC design is proposed and design issues are discussed. PFC is simulated using MATLAB and results are reported. Interface requirement between the power converter and microcontroller are discussed.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1374
Author(s):  
Bartosz Rozegnał ◽  
Paweł Albrechtowicz ◽  
Dominik Mamcarz ◽  
Monika Rerak ◽  
Maciej Skaza

This paper presents the skin effect impact on the active power losses in the sheathless single-core cables/wires supplying nonlinear loads. There are significant conductor losses when the current has a distorted waveform (e.g., the current supplying diode rectifiers). The authors present a new method for active power loss calculation. The obtained results have been compared to the IEC-60287-1-1:2006 + A1:2014 standard method and the method based on the Bessel function. For all methods, the active power loss results were convergent for small-cable cross-section areas. The proposed method gives smaller power loss values for these cable sizes than the IEC and Bessel function methods. For cable cross-section areas greater than 185 mm2, the obtained results were better than those for the other methods. There were also analyses of extra power losses for distorted currents compared to an ideal 50 Hz sine wave for all methods. The new method is based on the current penetration depth factor calculated for every considered current harmonics, which allows us to calculate the precise equivalent resistance for any cable size. This research is part of our work on a cable thermal analysis method that has been developed.


2021 ◽  
Vol 11 (4) ◽  
pp. 1873
Author(s):  
José Robinson Ortiz-Castrillón ◽  
Gabriel Eduardo Mejía-Ruiz ◽  
Nicolás Muñoz-Galeano ◽  
Jesús María López-Lezama ◽  
Juan Bernardo Cano-Quintero

This paper proposes a new sliding surface for controlling a Semi-Bridgeless Boost Converter (SBBC) which simultaneously performs Power Factor Correction (PFC) and DC bus regulation. The proposed sliding surface is composed of three terms: First, a normalized DC voltage error term controls the DC bus and rejects DC voltage disturbances. In this case, the normalization was performed for increasing system robustness during start-up and large disturbances. Second, an AC current error term implements a PFC scheme and guarantees fast current stabilization during disturbances. Third, an integral of the AC current error term increases stability of the overall system. In addition, an Adaptive Hysteresis Band (AHB) is implemented for keeping the switching frequency constant and reducing the distortion in zero crossings. Previous papers usually include the first and/or the second terms of the proposed sliding surface, and none consider the AHB. To be best of the author’s knowledge, the proposed Sliding Mode Control (SMC) is the first control strategy for SBBCs that does not require a cascade PI or a hybrid PI-Sliding Mode Control (PI-SMC) for simultaneously controlling AC voltage and DC current, which gives the best dynamic behavior removing DC overvoltages and responding fast to DC voltage changes or DC load current perturbations. Several simulations were carried out to compare the performance of the proposed surface with a cascade PI control, a hybrid PI-SMC and the proposed SMC. Furthermore, a stability analysis of the proposed surface in start-up and under large perturbations was performed. Experimental results for PI-SMC and SMC implemented in a SBBC prototype are also presented.


Sign in / Sign up

Export Citation Format

Share Document