scholarly journals Audiovisual Classification of Group Emotion Valence Using Activity Recognition Networks

Author(s):  
Joao Ribeiro Pinto ◽  
Tiago Goncalves ◽  
Carolina Pinto ◽  
Luis Sanhudo ◽  
Joaquim Fonseca ◽  
...  
Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4132 ◽  
Author(s):  
Ku Ku Abd. Rahim ◽  
I. Elamvazuthi ◽  
Lila Izhar ◽  
Genci Capi

Increasing interest in analyzing human gait using various wearable sensors, which is known as Human Activity Recognition (HAR), can be found in recent research. Sensors such as accelerometers and gyroscopes are widely used in HAR. Recently, high interest has been shown in the use of wearable sensors in numerous applications such as rehabilitation, computer games, animation, filmmaking, and biomechanics. In this paper, classification of human daily activities using Ensemble Methods based on data acquired from smartphone inertial sensors involving about 30 subjects with six different activities is discussed. The six daily activities are walking, walking upstairs, walking downstairs, sitting, standing and lying. It involved three stages of activity recognition; namely, data signal processing (filtering and segmentation), feature extraction and classification. Five types of ensemble classifiers utilized are Bagging, Adaboost, Rotation forest, Ensembles of nested dichotomies (END) and Random subspace. These ensemble classifiers employed Support vector machine (SVM) and Random forest (RF) as the base learners of the ensemble classifiers. The data classification is evaluated with the holdout and 10-fold cross-validation evaluation methods. The performance of each human daily activity was measured in terms of precision, recall, F-measure, and receiver operating characteristic (ROC) curve. In addition, the performance is also measured based on the comparison of overall accuracy rate of classification between different ensemble classifiers and base learners. It was observed that overall, SVM produced better accuracy rate with 99.22% compared to RF with 97.91% based on a random subspace ensemble classifier.


Author(s):  
Pranjal Kumar

Human Activity Recognition (HAR) has become a vibrant research field over the last decade, especially because of the spread of electronic devices like mobile phones, smart cell phones, and video cameras in our daily lives. In addition, the progress of deep learning and other algorithms has made it possible for researchers to use HAR in many fields including sports, health, and well-being. HAR is, for example, one of the most promising resources for helping older people with the support of their cognitive and physical function through day-to-day activities. This study focuses on the key role machine learning plays in the development of HAR applications. While numerous HAR surveys and review articles have previously been carried out, the main/overall HAR issue was not taken into account, and these studies concentrate only on specific HAR topics. A detailed review paper covering major HAR topics is therefore essential. This study analyses the most up-to-date studies on HAR in recent years and provides a classification of HAR methodology and demonstrates advantages and disadvantages for each group of methods. This paper finally addresses many problems in the current HAR subject and provides recommendations for potential study.


2018 ◽  
Vol 7 (3.8) ◽  
pp. 63
Author(s):  
Nilam Dhatrak ◽  
Anil Kumar Dudyala

In today’s world individuals health concern has improved a lot with the help of advancement in the technology. To monitor an age old person or a person with disability, now-a-days modern wearable smartphone devices are available in the market which are equipped with good collection of built in sensors that can be used for Human Activity Recognition (HAR). These type of devices generate lot of data with many number of features. When this data is used for classification, the classifier may be over trained or will definitely give high error rate. Hence, in this paper, we propose a two hybrid frameworks which gives us optimal number of features that can be used with different classifiers to recognize the Human Activity accurately. It is observed from our experiments that SVM was able to classify the HAR accurately.  


Author(s):  
Vijayaprabakaran K. ◽  
Sathiyamurthy K. ◽  
Ponniamma M.

A typical healthcare application for elderly people involves monitoring daily activities and providing them with assistance. Automatic analysis and classification of an image by the system is difficult compared to human vision. Several challenging problems for activity recognition from the surveillance video involving the complexity of the scene analysis under observations from irregular lighting and low-quality frames. In this article, the authors system use machine learning algorithms to improve the accuracy of activity recognition. Their system presents a convolutional neural network (CNN), a machine learning algorithm being used for image classification. This system aims to recognize and assist human activities for elderly people using input surveillance videos. The RGB image in the dataset used for training purposes which requires more computational power for classification of the image. By using the CNN network for image classification, the authors obtain a 79.94% accuracy in the experimental part which shows their model obtains good accuracy for image classification when compared with other pre-trained models.


Author(s):  
O. Teslenko ◽  
A. Pashko

The article discuses approaches to solving the problem of determining the activity of the driver from the cameras installed in the cargiven the actve development of intelligent driver asistance systems in recent years. The aricle provides an overview of the main problems that arise for the driver while driving Main advances in autonomous drving are presented and the classification of types of autonomous vehicles is provided . Next, the methods of solving the identified problems are described. The main part of the article focuses on solving the problem of determining the state of the driver during driving. Reasons for usage of computer vision and machine learning approaches for soving this task are described. The basic paradigms of the solution of his problem - classification of images, classification of a video stream, detection of the basic points of a body of the driver on the image from the camera installed inside a car are investigated. Main ideas of every method are described. The approaches are evaluated with identification of main advantages and drawbacks of the presented methods.


Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 409
Author(s):  
Giovanni Acampora ◽  
Gianluca Minopoli ◽  
Francesco Musella ◽  
Mariacarla Staffa

Human activity recognition is a crucial task in several modern applications based on the Internet of Things (IoT) paradigm, from the design of intelligent video surveillance systems to the development of elderly robot assistants. Recently, machine learning algorithms have been strongly investigated to improve the recognition task of human activities. Though, in spite of these research activities, there are not so many studies focusing on the efficient recognition of complex human activities, namely transitional activities, and there is no research aimed at evaluating the effects of noise in data used to train algorithms. In this paper, we bridge this gap by introducing an innovative activity recognition system based on a neural classifier endowed with memory, able to optimize the performance of the classification of both transitional and non-transitional human activities. The system recognizes human activities from unobtrusive IoT devices (such as the accelerometer and gyroscope) integrated in commonly used smartphones. The main peculiarity provided by the proposed system is related to the exploitation of a neural network extended with short-term memory information about the previous activities’ features. The experimental study proves the reliability of the proposed system in terms of accuracy with respect to state-of-the-art classifiers and the robustness of the proposed framework with respect to noise in data.


Sign in / Sign up

Export Citation Format

Share Document