Classification of movement data concerning user's activity recognition via mobile phones

Author(s):  
Spiridoula Tragopoulou ◽  
Iraklis Varlamis ◽  
Magdalini Eirinaki
2012 ◽  
Vol 3 ◽  
Author(s):  
Mark V. Albert ◽  
Santiago Toledo ◽  
Mark Shapiro ◽  
Konrad Kording

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4132 ◽  
Author(s):  
Ku Ku Abd. Rahim ◽  
I. Elamvazuthi ◽  
Lila Izhar ◽  
Genci Capi

Increasing interest in analyzing human gait using various wearable sensors, which is known as Human Activity Recognition (HAR), can be found in recent research. Sensors such as accelerometers and gyroscopes are widely used in HAR. Recently, high interest has been shown in the use of wearable sensors in numerous applications such as rehabilitation, computer games, animation, filmmaking, and biomechanics. In this paper, classification of human daily activities using Ensemble Methods based on data acquired from smartphone inertial sensors involving about 30 subjects with six different activities is discussed. The six daily activities are walking, walking upstairs, walking downstairs, sitting, standing and lying. It involved three stages of activity recognition; namely, data signal processing (filtering and segmentation), feature extraction and classification. Five types of ensemble classifiers utilized are Bagging, Adaboost, Rotation forest, Ensembles of nested dichotomies (END) and Random subspace. These ensemble classifiers employed Support vector machine (SVM) and Random forest (RF) as the base learners of the ensemble classifiers. The data classification is evaluated with the holdout and 10-fold cross-validation evaluation methods. The performance of each human daily activity was measured in terms of precision, recall, F-measure, and receiver operating characteristic (ROC) curve. In addition, the performance is also measured based on the comparison of overall accuracy rate of classification between different ensemble classifiers and base learners. It was observed that overall, SVM produced better accuracy rate with 99.22% compared to RF with 97.91% based on a random subspace ensemble classifier.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 134
Author(s):  
Friedrich Niemann ◽  
Stefan Lüdtke ◽  
Christian Bartelt ◽  
Michael ten Hompel

The automatic, sensor-based assessment of human activities is highly relevant for production and logistics, to optimise the economics and ergonomics of these processes. One challenge for accurate activity recognition in these domains is the context-dependence of activities: Similar movements can correspond to different activities, depending on, e.g., the object handled or the location of the subject. In this paper, we propose to explicitly make use of such context information in an activity recognition model. Our first contribution is a publicly available, semantically annotated motion capturing dataset of subjects performing order picking and packaging activities, where context information is recorded explicitly. The second contribution is an activity recognition model that integrates movement data and context information. We empirically show that by using context information, activity recognition performance increases substantially. Additionally, we analyse which of the pieces of context information is most relevant for activity recognition. The insights provided by this paper can help others to design appropriate sensor set-ups in real warehouses for time management.


Author(s):  
Pranjal Kumar

Human Activity Recognition (HAR) has become a vibrant research field over the last decade, especially because of the spread of electronic devices like mobile phones, smart cell phones, and video cameras in our daily lives. In addition, the progress of deep learning and other algorithms has made it possible for researchers to use HAR in many fields including sports, health, and well-being. HAR is, for example, one of the most promising resources for helping older people with the support of their cognitive and physical function through day-to-day activities. This study focuses on the key role machine learning plays in the development of HAR applications. While numerous HAR surveys and review articles have previously been carried out, the main/overall HAR issue was not taken into account, and these studies concentrate only on specific HAR topics. A detailed review paper covering major HAR topics is therefore essential. This study analyses the most up-to-date studies on HAR in recent years and provides a classification of HAR methodology and demonstrates advantages and disadvantages for each group of methods. This paper finally addresses many problems in the current HAR subject and provides recommendations for potential study.


2018 ◽  
pp. 2387-2401
Author(s):  
Shashank Mujumdar ◽  
Dror Porat ◽  
Nithya Rajamani ◽  
L.V. Subramaniam

During the past decade, the number of mobile electronic devices equipped with cameras has increased dramatically and so has the number of real-world applications for image classification. In many of these applications, the image data is captured in an uncontrolled manner and in complex environments and conditions under which existing image classification techniques may not perform well. In this paper, the authors provide a detailed description of an efficient multi-stage image classification framework that is robust enough to remain effective also under challenging imaging conditions, and demonstrate its effectiveness in the context of classification of real-world images of dumpsters captured by mobile phones in the metropolitan city of Hyderabad. Their system is able to achieve accurate classification of the cleanliness state of the dumpsters by utilizing a multi-stage approach, where the first stage is the efficient detection of the dumpster and the second stage is the classification of its state. The authors provide a detailed analysis of the performance of the system as well as comprehensive experimental results on real-world image data.


2018 ◽  
Vol 7 (3.8) ◽  
pp. 63
Author(s):  
Nilam Dhatrak ◽  
Anil Kumar Dudyala

In today’s world individuals health concern has improved a lot with the help of advancement in the technology. To monitor an age old person or a person with disability, now-a-days modern wearable smartphone devices are available in the market which are equipped with good collection of built in sensors that can be used for Human Activity Recognition (HAR). These type of devices generate lot of data with many number of features. When this data is used for classification, the classifier may be over trained or will definitely give high error rate. Hence, in this paper, we propose a two hybrid frameworks which gives us optimal number of features that can be used with different classifiers to recognize the Human Activity accurately. It is observed from our experiments that SVM was able to classify the HAR accurately.  


Sign in / Sign up

Export Citation Format

Share Document