A novel LCL filter parameter design method basing on resonant frequency optimization of three-level NPC grid connected inverter

Author(s):  
Ning Li ◽  
Yue Wang ◽  
Ruigen Niu ◽  
Wei Guo ◽  
Wanjun Lei ◽  
...  
IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 189878-189890
Author(s):  
Faban Zheng ◽  
Weimin Wu ◽  
Bolin Chen ◽  
Eftichios Koutroulis

Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 973
Author(s):  
Yulu Cui ◽  
Yifeng Wang ◽  
Xiaoyong Ma

In this paper, a high frequency, interleaved, dual-buck, bidirectional, grid-connected converter topology is proposed. Free from the straight-through and dead-time distortion issues, both higher switching frequency and power density can be achieved. Due to the interleaved technique, the current ripple and stress for inductors and other power devices can be effectively reduced. Moreover, a novel filter parameter design method is proposed. The method is optimized with smaller inductance, higher filtering performance, and better steady-state performance. For one thing, the performance requirements under the two states of inverter and rectifier are comprehensively considered. For another, the relationship between the performance indexes and the filter parameters is analyzed. However, the results show that the relationship between the performance indexes is contradictory. A set of optimization parameters were obtained by setting the priority of the filter performance index. The specific design process of the filter parameters is given in detail. In order to verify the rationality of the parameter design, a 5 kW prototype was built and tested. The total harmonic distortions (THDs) of the grid currents in the among grid-connected inverter, off-connected inverter, and rectifier states under full load were 2.7%, 1.2%, and 4.5%, respectively, and the power density reached 36 W/in3.


2009 ◽  
Vol 56 (11) ◽  
pp. 4483-4491 ◽  
Author(s):  
Fei Liu ◽  
Yan Zhou ◽  
Shanxu Duan ◽  
Jinjun Yin ◽  
Bangyin Liu ◽  
...  

2022 ◽  
Vol 9 ◽  
Author(s):  
Fuyun Wu ◽  
Zhuang Sun ◽  
Weiji Xu ◽  
Zhizhou Li ◽  
Jianguo Lyu

Under weak grid conditions, the variation of the grid impedance will affect the steady-state and dynamic performance of the LCL-filtered grid-connected inverter and even make the inverter unstable. To ensure the system stability and further improve the dynamic performance in a weak grid, a control parameter design method with multi-constrains considering the system bandwidth for the current controller and active damping is proposed in this paper. First, based on the current controller and active damping with only grid current feedback, the effects of control parameters and grid impedance on the LCL resonant suppression and the performance of the inverter are analyzed. Moreover, the parameter constraints of the controllers are derived considering the grid impedance, including stability, resonance suppression, and margin constraints. Furthermore, as the system bandwidth affects the dynamic performance of the inverter, combined with the obtained multi-constraints, the optimal control parameters are determined by achieving the maximum bandwidth of the system against the impedance variation. Compared with other two methods, when the proposed method is applied, the system can operate with a better dynamic and steady-state performance. Finally, experiments are performed on a 2 kW three-phase grid-connected inverter in the weak grid, which verify the effectiveness of the parameter design method proposed in this paper.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2637
Author(s):  
Zheng ◽  
Liu ◽  
Liu ◽  
Li ◽  
Dai ◽  
...  

To improve the robustness of grid-connected inverter against grid impedance in a weak grid an integrated design method of LCL-filter parameters and controller parameters is proposed. In the method the inherent relation of LCL-filter parameters and controller parameters is taken into consideration to realize their optimized match. A parameter normalization scheme is also developed to facilitate the system stability and robustness analysis. Based on the method all normalization parameters can be designed succinctly according to the required stability and robustness. Additionally, the LCL parameter and controller parameter can be achieved immediately by restoring normalization parameters. The proposed design method can guarantee the inverter stability and robustness simultaneously without needing any compensation network, additional hardware, or the complicated iterative computations which cannot be avoided for the conventional inverter design method. Simulation and experiment results have validated the superiority of the proposed inverter design method.


Sign in / Sign up

Export Citation Format

Share Document