Ultracapacitor based Constant Torque Regenerative Braking System for a Brushless DC Motor

Author(s):  
Peter K. Abraham ◽  
Jayan Namboodiry
2014 ◽  
Vol 13 (04) ◽  
pp. 223-236 ◽  
Author(s):  
Guo-Zhu Zhao ◽  
Xing Peng

To use regenerative braking to act as an auxiliary brake to maintain the constant speed of a brushless DC motor driven electric bus (BDCMEB) on downhill based on the feature of double-loop control structure of the control method for electric vehicle traction motor and the variable structural characteristics of PWM Control System for brushless DC Motor. A double-manifold variable structure control method to control regenerative braking is proposed for the bus cruising downhill. The impact of lead-acid battery's charge acceptance ability over a long charging period on the regenerative braking force of a driving motor is analyzed. Dynamic model of the bus on long downhill is established. A double-manifold variable structure controller is designed for the DCMEB on long downhill. The simulation result shows that the control system maintains enough stability and strong robustness. It may be achieved for the bus to maintain a constant speed downhill only by regenerative braking on a smaller slope. But the dynamic process is very slow. When deceleration or a constant speed is desired on a larger slope, only by electro mechanical parallel braking can the bus track the target speed precisely and quickly.


2011 ◽  
Vol 383-390 ◽  
pp. 4878-4883
Author(s):  
Jia Kuan Xia ◽  
Ye Yuan ◽  
Wei Huang

Torque ripple reduction of the brushless DC motor has been the main issue of the servo drives in which the speed fluctuation and the vibration should be minimized. Un-ideal back EMF (electromagnetic force) usually induces distinct torque ripple. A full EMF feedback strategy is presented in order to effectively reduce torque ripple. The relationship between the terminal voltage of auxiliary winding and the back EMF of brushless DC motor are investigated, and the back EMF can be measured on-line by using the auxiliary winding, the q-axis current for a constant torque to produce is calculated through coordinate transformation when d-axis current is zero, and the reference q-axis current is adjusted in real time by vector control in dq0 coordinate. The simulation results show that the proposed strategy can effectively minimize the torque ripple.


Sign in / Sign up

Export Citation Format

Share Document