Numerical Simulation on Permeability Change in Cell Membrane by Terahertz Irradiation-Induced Hydrophilic Pores

Author(s):  
Wenfei Bo ◽  
Rong Che ◽  
Lianghao Guo ◽  
Yinchuan Wang ◽  
Lemeng Guo ◽  
...  
2021 ◽  
Vol 70 (24) ◽  
pp. 248707-248707
Author(s):  
Bo Wen-Fei ◽  
◽  
Che Rong ◽  
Kong Lei ◽  
Zhang Ming-Jie ◽  
...  

2002 ◽  
Vol 29 (9) ◽  
pp. 34-1-34-4 ◽  
Author(s):  
Jörn Bartels ◽  
Michael Kühn ◽  
Wilfried Schneider ◽  
Christoph Clauser ◽  
Hansgeorg Pape ◽  
...  

2021 ◽  
Author(s):  
Rui Wang ◽  
Chengyuan Lv ◽  
Xuan Liu ◽  
Yongqiang Tang ◽  
Maolei Cui ◽  
...  

Abstract CO2 storage mechanisms in an EOR process in mature reservoirs are measured to determine three types of storage factors, which are introduced into compositional numerical simulation. The hybrid objective function coupli ng the oil recovery factor and the CO2 storage ratio is proposed to optimize the injection and production parameters in CO2 flooding. Three storage factors of the oil and water partition coefficient, the permeability change coefficient and the CO2 retention factor are measured in a laboratory, which is utilized to modify the grid properties of oil, brine, rock in compositional numerical simulation. The restart procedure is automatically adopted to consider these storage mechanisms in CO2 EOR. The bi-objective function of the oil recovery factor and the CO2 storage ratio is used to optimize the injection and production parameters for CO2 EOR, which concludes the design principles on CO2 EOR and storage. The oil and water partition coefficient defined as the ratio of the CO2 solubility in the oil phase and the brine phase is a constant for a specific reservoir condition. The permeability change coefficient caused by the mineral dissolution effect of carbonate water decreases slightly in the early stage and increases gradually with the long term injection. The CO2 retention factor that is induced by the relative permeability hysteresis decreases with the pressure and the permeability. These equivalent treated methods that modify fluids and rock in the real-time are inserted into the procedure of compositional numerical simulation to take into account the storage mechanisms in CO2 EOR. The results show that the effect of the storage mechanisms on EOR is evident. Furthermore, the bi - objective optimization indicates that the injection rate should be reduced largely in the medium and the later stages to control gas channeling as the EOR scenario is focused. And the bottom wellhole pressure of producers should be decreased to the lower level to maximize oil recovery. As the storage scenario is concentrated, the injection rate is required to be slightly controlled. As the producers are shut off, the injection rate must be increased significantly to maximize CO2 storage. The storage mechanisms in the CO2 EOR process have not been understood thoroughly. The methodology of numerical simulation coupling CO2 EOR and storage is not mature, which is still not taken into account in commercial software. The results above provide a way to optimize CO2 EOR and storage simultaneously, which is significant for the large scale storage after CO2 EOR in mature oilfield.


Author(s):  
M. Ashraf ◽  
L. Landa ◽  
L. Nimmo ◽  
C. M. Bloor

Following coronary artery occlusion, the myocardial cells lose intracellular enzymes that appear in the serum 3 hrs later. By this time the cells in the ischemic zone have already undergone irreversible changes, and the cell membrane permeability is variably altered in the ischemic cells. At certain stages or intervals the cell membrane changes, allowing release of cytoplasmic enzymes. To correlate the changes in cell membrane permeability with the enzyme release, we used colloidal lanthanum (La+++) as a histological permeability marker in the isolated perfused hearts. The hearts removed from sprague-Dawley rats were perfused with standard Krebs-Henseleit medium gassed with 95% O2 + 5% CO2. The hypoxic medium contained mannitol instead of dextrose and was bubbled with 95% N2 + 5% CO2. The final osmolarity of the medium was 295 M osmol, pH 7. 4.


Author(s):  
J. J. Paulin

Movement in epimastigote and trypomastigote stages of trypanosomes is accomplished by planar sinusoidal beating of the anteriorly directed flagellum and associated undulating membrane. The flagellum emerges from a bottle-shaped depression, the flagellar pocket, opening on the lateral surface of the cell. The limiting cell membrane envelopes not only the body of the trypanosome but is continuous with and insheathes the flagellar axoneme forming the undulating membrane. In some species a paraxial rod parallels the axoneme from its point of emergence at the flagellar pocket and is an integral component of the undulating membrane. A portion of the flagellum may extend beyond the anterior apex of the cell as a free flagellum; the length is variable in different species of trypanosomes.


Sign in / Sign up

Export Citation Format

Share Document