Cell hardness measurement by using two-fingered microhand with micro force sensor

Author(s):  
D. Kawakami ◽  
K. Ohara ◽  
T. Takubo ◽  
Y. Mae ◽  
A. Ichikawa ◽  
...  
2014 ◽  
Vol 599-601 ◽  
pp. 1135-1138
Author(s):  
Chao Zhe Ma ◽  
Jin Song Du ◽  
Yi Yang Liu

At present, sub-micro-Newton (sub-μN) micro-force in micro-assembly and micro-manipulation is not able to be measured reliably. The piezoelectric micro-force sensors offer a lot of advantages for MEMS applications such as low power dissipation, high sensitivity, and easily integrated with piezoelectric micro-actuators. In spite of many advantages above, the research efforts are relatively limited compared to piezoresistive micro-force sensors. In this paper, Sensitive component is polyvinylidene fluoride (PVDF) and the research object is micro-force sensor based on PVDF film. Moreover, the model of micro-force and sensor’s output voltage is built up, signal processing circuit is designed, and a novel calibration method of micro-force sensor is designed to reliably measure force in the range of sub-μN. The experimental results show the PVDF sensor is designed in this paper with sub-μN resolution.


Micromachines ◽  
2017 ◽  
Vol 8 (10) ◽  
pp. 304
Author(s):  
Huan Liu ◽  
Zhongliang Yu ◽  
Yan Liu ◽  
Xudong Fang

2020 ◽  
Vol 238 ◽  
pp. 12009
Author(s):  
Walter S. J. Ferreira ◽  
Paulo S. S. dos Santos ◽  
Paulo Caldas ◽  
Pedro A. S. Jorge ◽  
João M. S. Sakamoto

In this work, a long-period fiber grating (LPG) based sensor was evaluated as a sensing device for micro-force measurement, in the order of micro Newtons. It was used an LPG fabricated by arc-inducted technique in a SMF-28 standard optical fiber. The optical fiber was fixed between two clamps with a separation of 150 mm with the middle of the LPG located at the center. Characterizations were performed in terms of temperature, curvature and strain. The grating was then used as a micro-force sensor by means of both curvature and strain, induced by a hung mass in a stretched fiber. Furthermore, the evaluation of a precurvature LPG was performed to assess if an increase of sensitivity is achieved. Micro-force sensitivity achieved with the stretched LPG was 1.41 nm/mN and it was demonstrated that its sensitivity can be enhanced to 5.14 nm/mN with a pre-curvature of 2.2 m–1 applied to the LPG, achieving a spectral resolution of at least 15.6 μN.


2012 ◽  
Vol 7 (1-3) ◽  
pp. 13-20 ◽  
Author(s):  
Kenichi Ohara ◽  
Daiki Kawakami ◽  
Tomohito Takubo ◽  
Yasushi Mae ◽  
Tamio Tanikawa ◽  
...  

Author(s):  
Hiroyuki Yabugaki ◽  
Kenichi Ohara ◽  
Masaru Kojima ◽  
Mitsuhiro Horade ◽  
Kazuto Kamiyama ◽  
...  

2011 ◽  
Vol 2-3 ◽  
pp. 489-494
Author(s):  
Zhi Yong Sun ◽  
Wen Lin Chen ◽  
Yun Quan Su ◽  
Li Na Hao

This article is intended to design a static micro-force sensor with a simple structure employing the polymer material PVDF (polyvinylidene fluoride) film as its sensing element, and will carry out some micro-force tracking tests. During the tracking tests, this paper employs a Fuzzy-PID control method and an ordinary PD control method to control the system, and will also analyze the results of them.


Sign in / Sign up

Export Citation Format

Share Document