Embedding a Nonlinear Strict Oscillatory Mode into a Segmented Leg

Author(s):  
Anna Sesselmann ◽  
Florian Loeffl ◽  
Cosimo Della Santina ◽  
Maximo A. Roa ◽  
Alin Albu-Schaffer
Keyword(s):  
2020 ◽  
Vol 18 (9) ◽  
pp. 725-738
Author(s):  
Palle Kiran ◽  
S. H. Manjula

An imposed time-periodic gravity field effect on double-diffusive magneto-convection for oscillatory mode has been investigated. The gravity field consisting of steady and periodic modes. A layer is confined with an electrically conducting fluid with Boussines q approximation and heated from below cooled from above. While using the perturbation technique we study nonlinear double-diffusive convection just above the critical state of the onset convection. The growth rate of the disturbances is confined with a critical Rayleigh number to investigate oscillatory convection. Analysis of finite- amplitude convection has been derived through the complex Ginzburg-Landau equation (CGLE). The convective heat and mass transfer obtained through CGLE at third-order under solvability conditions. This convective amplitude is required to estimate heat and mass transfer in terms of the Nusselt and Sherwood numbers. It is found that increasing the frequency of modulation causes diminishing heat and mass transfer. The effect of Prandtl number Pr, magnetic Prandtl number Pm, and amplitude δ enhances heat/mass transfer. It is found that an oscillatory mode of convection enhances the heat and mass transfer than the stationary mode. Further, streamlines, isotherms, and isohalines have their usual nature on double-diffusive magnetoconvection.


2002 ◽  
Vol 87 (6) ◽  
pp. 3160-3164 ◽  
Author(s):  
Yasuko Inokuma ◽  
Tsuyoshi Inoue ◽  
Satoshi Watanabe ◽  
Yutaka Kirino

We identified two classes of network oscillations with different frequency ranges in the tentacle ganglion (TG), the primary olfactory center of the terrestrial mollusk Limax marginatus, and investigated the responses of these oscillations to odor inputs. A recent study indicated that there are serotonergic terminals in the TG. We found that when serotonin was applied to the TG, the spontaneous network oscillation of about 1.5 Hz in the TG changed its oscillatory frequency to 0.5 Hz. These two oscillations are distinct, because 1) in most cases, the application of serotonin to the TG initially inhibited the 1.5-Hz oscillation and subsequently generated the slow 0.5-Hz oscillation; and 2) occasionally, the application of serotonin did not inhibit the spontaneous 1.5-Hz oscillation, resulting in the coexistence of two network oscillations. Thus the TG has two different oscillatory dynamics. We named the spontaneous 1.5-Hz oscillation the fast oscillation (FO), and the serotonin-induced 0.5-Hz oscillation the slow oscillation (SO). By calculating the spatial coherence of the TG oscillations, we found that the FO is a noncoherent oscillatory mode and the SO is a coherent oscillatory mode. Finally, odor presentation to the olfactory receptors selectively modulated the SO by decreasing the oscillatory amplitude, but the FO was not modulated by the odor input. These results indicate that 1) the TG has two oscillatory states (FO and SO) and these states are changed by the extracellular level of serotonin, and 2) these two oscillatory states have different responses to odors.


Author(s):  
Jaroslav Bušek ◽  
Matěj Kuře ◽  
Martin Hromčík ◽  
Tomáš Vyhlídal

A control design and numerical study is presented for the problem of maneuvering a quadcopter with suspended load. An inverse shaper with a distributed time delay is applied to the feedback path in order to pre-compensate the oscillatory mode of the two-body system. As the first step, the mode to be targeted by the inverse shaper is determined, which is neither the oscillatory mode of the overall system dynamics, nor the oscillatory mode of the suspended load. Next, the established cascade control scheme for UAVs with slave PD pitch angle controller and master PID velocity controller is adopted and supplemented by the inverse shaper tuned to the isolated flexible mode. The numerical and simulation based analysis reveals the key design aspects and dynamics features — due to including the inverse shaper with time delays, the closed loop system becomes infinite dimensional. As the main result, the positive effects of including the inverse shaper in the loop feedback are demonstrated. First of all, the oscillatory mode is well compensated when excited by both the set-point and disturbance changes. Besides, it is shown that the mode compensation is preserved even when reaching the saturation limits at the control actions.


2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Palle Kiran ◽  
B. S. Bhadauria

A study of thermal instability driven by buoyancy force is carried out in an initially quiescent infinitely extended horizontal rotating fluid layer. The temperature at the boundaries has been taken to be time-periodic, governed by the sinusoidal function. A weakly nonlinear stability analysis has been performed for the oscillatory mode of convection, and heat transport in terms of the Nusselt number, which is governed by the complex form of Ginzburg–Landau equation (CGLE), is calculated. The influence of external controlling parameters such as amplitude and frequency of modulation on heat transfer has been investigated. The dual effect of rotation on the system for the oscillatory mode of convection is found either to stabilize or destabilize the system. The study establishes that heat transport can be controlled effectively by a mechanism that is external to the system. Further, the bifurcation analysis also presented and established that CGLE possesses the supercritical bifurcation.


Author(s):  
B. Cheng ◽  
X. Deng

Using a dynamically scaled robotic wing, we studied the aerodynamic torque generation of flapping wings during roll, pitch, and yaw rotations of the stroke plane. The total torque generated by a wing pair with symmetrical motions was previously known as flapping counter-torques (FCTs). For all three types of rotation, stroke-averaged FCTs act opposite to the directions of rotation and are collinear with the rotational axes. Experimental results indicate that the magnitude of FCTs is linearly dependent on both the flapping frequency and the angular velocity. We also compared the results with predictions by a mathematical model based on quasi-steady analyses, where we show that FCTs can be described through consideration of the asymmetries of wing velocity and the effective angle of attack caused by each type of rotation. For roll and yaw rotations, our model provided close estimations of the measured values. However, for pitch rotation the model tends to underestimate the magnitude of FCT, which might result from the effect of the neglected aerodynamics, especially the wake capture. Similar to the FCT, which is induced by body rotation, we further provide a mathematical model for the counter force induced by body translation, which is termed as flapping counter-force (FCF). Based on the FCT and FCF models, we are able to provide analytical estimations of stability derivatives and to study the flight dynamics at hovering. Using fruit fly (Drosophila) morphological data, we calculated the system matrix of the linearized flight dynamics. Similar to previous studies, the longitudinal dynamics consist of two stable subsidence modes with fast and slow time constants, as well as an unstable oscillatory mode. The longitudinal instability is mainly caused by the FCF induced by an initial forward/backward velocity, which imparts a pitch torque to the same direction of initial pitch velocity. Similarly, the lateral dynamics also consist of two stable subsidence modes and an unstable oscillatory mode. The lateral instability is mainly caused by the FCF induced by an initial lateral velocity, which imparts a roll torque to the same direction of initial roll velocity. In summary, our models provide the first analytical approximation of the six-degree-of-freedom flight dynamics, which is important in both studying the control strategies of the flying insects and designing the controller of the future flapping-wing micro air vehicles (MAVs).


2019 ◽  
Vol 876 ◽  
pp. 573-590 ◽  
Author(s):  
Anna E. Samoilova ◽  
Alexander Nepomnyashchy

We use linear proportional control for the suppression of the Marangoni instability in a thin film heated from below. Our keen interest is focused on the recently revealed oscillatory mode caused by a coupling of two long-wave monotonic instabilities, the Pearson and deformational ones. Shklyaev et al. (Phys. Rev. E, vol. 85, 2012, 016328) showed that the oscillatory mode is critical in the case of a substrate of very low conductivity. To stabilize the no-motion state of the film, we apply two linear feedback control strategies based on the heat flux variation at the substrate. Strategy (I) uses the interfacial deflection from the mean position as the criterion of instability onset. Within strategy (II) the variable that describes the instability is the deviation of the measured temperatures from the desired, conductive values. We perform two types of calculations. The first one is the linear stability analysis of the nonlinear amplitude equations that are derived within the lubrication approximation. The second one is the linear stability analysis that is carried out within the Bénard–Marangoni problem for arbitrary wavelengths. Comparison of different control strategies reveals feedback control by the deviation of the free surface temperature as the most effective way to suppress the Marangoni instability.


2018 ◽  
Vol 23 (3) ◽  
pp. 635-653 ◽  
Author(s):  
P. Kiran ◽  
Y. Narasimhulu ◽  
S.H. Manjula

Abstract The effect of vertical throughfow and temperature modulation on a viscoelastic fluid saturated porous medium has been investigated. The amplitudes of temperature modulation at the lower and upper surfaces are considered to be very small and the disturbances are expanded in terms of power series of amplitude of convection. A weak nonlinear stability analysis has been performed for the oscillatory mode of convection, and heat transport in terms of the Nusselt number, which is governed by the non autonomous complex Ginzburg- Landau equation, is calculated. The effect of vertical through flow is found to stabilize the system irrespective of the direction of through flow in the case of permeable boundary conditions. The time relaxation has a destabilizing effect, while the time retardation parameter has a stabilizing effect on the system. The effects of amplitude and frequency of modulation on heat transport have been analyzed and depicted graphically. The study shows that the heat transport can be controlled effectively by a mechanism that is external to the system. Further, it is also found that heat transfer is more in oscillatory mode of convection rather than in stationary mode of convection.


Sign in / Sign up

Export Citation Format

Share Document