Free-space material measurement of dielectric plate in millimeter frequency range

Author(s):  
Jin-Seob Kang ◽  
Jeong-Hwan Kim ◽  
Kwang Yong Kang ◽  
Dae Hwan Yoon ◽  
Sung Won Park
2021 ◽  
Vol 21 (1) ◽  
pp. 51-59
Author(s):  
Jin-Seob Kang ◽  
Jeong-Hwan Kim

The electrical properties of materials and their dependence on frequency and temperature are indispensable in designing electromagnetic devices and systems in various areas of engineering and science for both basic and applied researches. A free-space transmission/reflection method measuring the free-space scattering parameters of a material under test (MUT) located at the middle of transmit/receive antennas in a free space is suitable for non-destructively testing the MUT without prior machining or physical contact in high-frequency range. This paper describes a planar offset short applicable to the calibration of a quasi-optic based free-space material measurement system in the millimeter-wave frequency range. The measurement results of the dimensional and electrical properties for the three fabricated planar offset shorts with the phase difference of 120° between the reflection coefficients of the planar shorts in the W-band (75–110 GHz) are presented.


2015 ◽  
Vol 74 (19) ◽  
pp. 1767-1776 ◽  
Author(s):  
V. I. Bezborodov ◽  
O.S. Kosiak ◽  
Ye. M. Kuleshov ◽  
V. V. Yachin

2016 ◽  
Vol 14 ◽  
pp. 11-16
Author(s):  
Thomas Kleine-Ostmann ◽  
Frank Huncke ◽  
Dieter Schwarzbeck ◽  
Otto Martetschläger ◽  
Jürgen Gaßner ◽  
...  

Abstract. In this paper we discuss the results of an intercomparison for free space antenna factor measurements performed within the German Calibration Service (DKD). Three different types of antennas covering the frequency range from 30 MHz to 26.5 GHz have been calibrated in five different laboratories using different methods and calibration sites to obtain the free space antenna factor. The results agree well within the uncertainties specified by the laboratories suggesting that different approaches and different measurement sites to obtain the free space antenna factor are well compatible.


2021 ◽  
Vol 26 (3) ◽  
pp. 270-277
Author(s):  
D. V. Mayboroda ◽  
◽  
S. O. Pogarsky ◽  

Purpose: Nowadays, in the millimeter frequency range, the dielectric waveguides of various modifications have certain advantages over the standard metal waveguides, primarily due to the possibility of creating functional units based on them. This is due to the relative simplicity and low cost of manufacturing the dielectric waveguides and functional units using them, the high degree of their integration with active elements, the use in their manufacture of different dielectrics and polymers with a wide range of material constants and a variety of mechanical properties (in particular, some materials have a significant flexibility). After making a series of physical experiments we have found the possibility of implementing the frequency selection and radiation into free space of electromagnetic waves by a hybrid metal-dielectric structure. Design/methodology/approach: The studied electrodynamic structure belongs to the class of hybrid metal-dielectric structures. It includes a modified inverted dielectric waveguide with a periodic sequence on the dielectric plate of fifteen dielectric rods with metallized coating on one of the faces placed outwards. The structure efficiency was estimated by the voltage standing-wave ratio (VSWR) values and power attenuation in the duct. The measurements were made with the reflectometer method. To estimate the degree of electromagnetic field concentration near the rod inhomogeneities in the near zone, the mobile probe method was used. The field structures were visualized with the method of isolines. Findings: The results of a series of experimental investigations showed the possibility of matching the structure with the external waveguides in the frequency range of 26.5-32.5 GHz with the voltage standing-wave ratio (VSWR) less than 1.8. The frequency dependence of attenuation is oscillatory with clearly expressed frequency ranges with small and large attenuation values. Moreover, the dependence is almost periodic, which is typical of periodic structures. The frequency response slope in the transition zones can be quite high and reach values of 41.26 dB/GHz. The degree of concentration of the electric field near the waveguide dielectric rod and the degree of excitation of the dielectric inhomogeneities was found by directly measured electric field strength in the near zone. Measurements of energy characteristics made under the short-circuit conditions for the main guide and in the mode of matched load of the main guide showed both the ability to control the polarization characteristics and the ability to change the appearance of the pattern and its orientation in space. Conclusions: It has been experimentally proven that a hybrid metal-dielectric structure, being a modified inverted dielectric waveguide with a periodic sequence on the dielectric plate of fifteen dielectric rods with metalized coating on one of the faces placed outwards, can be effectively integrated into a standard transmission line. It is found that this structure can be matched with the external circuits in a fairly wide frequency range. It is also found that in different frequency ranges this hybrid metal-dielectric structure shows the possibility of both efficient frequency selection and radiation in free space. Antenna measurements have shown the beam pattern shape controllability. Key words: inverted dielectric waveguide, periodic sequence, voltage standing-wave ratio (VSWR), attenuation, reflectometer method, mobile probe method, directivity pattern


Research ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Jing Jiang ◽  
Xiao Lin ◽  
Baile Zhang

Negative refraction of highly squeezed polaritons is a fundamental building block for nanophotonics, since it can enable many unique applications, such as deep-subwavelength imaging. However, the phenomenon of all-angle negative refraction of highly squeezed polaritons, such as graphene plasmons with their wavelength squeezed by a factor over 100 compared to free-space photons, was reported to work only within a narrow bandwidth (<1 THz). Demonstrating this phenomenon within a broad frequency range remains a challenge that is highly sought after due to its importance for the manipulation of light at the extreme nanoscale. Here we show the broadband all-angle negative refraction of highly squeezed hyperbolic polaritons in 2D materials in the infrared regime, by utilizing the naturally hyperbolic 2D materials or the hyperbolic metasurfaces based on nanostructured 2D materials (e.g., graphene). The working bandwidth can vary from several tens of THz to over a hundred of THz by tuning the chemical potential of 2D materials.


1953 ◽  
Vol 57 (510) ◽  
pp. 420-422 ◽  
Author(s):  
B. A. Hunn

The problem of deducing resonance modes of vibration of an aircraft in free space is a concomitant of flutter calculations if the number of degrees of freedom used is to be small. When the structure is complex in that it involves wings, fuselage and tailplane, each of which possesses infinitely many normal modes, it becomes apparent that the number of point masses which must be considered, in constructing a dynamical equivalent to give a sufficient coverage of the frequency range in which flutter is likely, is very large. For example, it may be necessary to use four rods per wing and per tailplane and four point masses on the fuselage. This would involve 8 + 8 + 4 degrees of freedom, and if the usual technique of characteristic roots is used it would be necessary to consider a characteristic root matrix of order 20 × 20.


Sign in / Sign up

Export Citation Format

Share Document