Sapparchi: An Architecture for Smart City Applications from Edge, Fog and Cloud Computing

Author(s):  
Arthur Souza ◽  
Larysse Izidio ◽  
Aluizio Rocha ◽  
Nelio Cacho ◽  
Thais Batista
Keyword(s):  
Author(s):  
Mais Haj Qasem ◽  
Alaa Abu-Srhan ◽  
Hutaf Natoureah ◽  
Esra Alzaghoul

Fog-computing is a new network architecture and computing paradigm that uses user or near-users devices (network edge) to carry out some processing tasks. Accordingly, it extends the cloud computing with more flexibility the one found in the ubiquitous networks. A smart city based on the concept of fog-computing with flexible hierarchy is proposed in this paper. The aim of the proposed design is to overcome the limitations of the previous approaches, which depends on using various network architectures, such as cloud-computing, autonomic network architecture and ubiquitous network architecture. Accordingly, the proposed approach achieves a reduction of the latency of data processing and transmission with enabled real-time applications, distribute the processing tasks over edge devices in order to reduce the cost of data processing and allow collaborative data exchange among the applications of the smart city. The design is made up of five major layers, which can be increased or merged according to the amount of data processing and transmission in each application. The involved layers are connection layer, real-time processing layer, neighborhood linking layer, main-processing layer, data server layer. A case study of a novel smart public car parking, traveling and direction advisor is implemented using IFogSim and the results showed that reduce the delay of real-time application significantly, reduce the cost and network usage compared to the cloud-computing paradigm. Moreover, the proposed approach, although, it increases the scalability and reliability of the users’ access, it does not sacrifice much time, nor cost and network usage compared to fixed fog-computing design.


Author(s):  
Lubna Luxmi Dhirani ◽  
Thomas Newe ◽  
Shahzad Nizamani

Cloud computing migrations are increasing rapidly. The main influencing factor being IT management costs. IoT-based enterprises that started their cloud journey by setting up small private clouds within their enterprise have often found that as the applications and services they use broaden. Then the shift towards incorporating public clouds becomes inevitable. The current problem that many of these firms are encountering is the difficulty of managing multiple clouds that reside within different vendors running on different platforms, computational requirements, and vendor SLAs. Lack of support for a single standard for an overall multi-cloud hybrid model exposes the hybrid IT-management to further threats. This makes it difficult for an adopting enterprise to manage and maintain its cloud-based systems during peak performance hours, which often leads to system downtime. This chapter discusses various SLA issues specific to a hybrid multi-cloud environment and suggests possible solutions to help adopting firms in their management.


2019 ◽  
Vol 13 (1) ◽  
pp. 119-129 ◽  
Author(s):  
Changhao Wang ◽  
Shining Li ◽  
Tao Cheng ◽  
Bingqi Li

2016 ◽  
Vol 2 (1) ◽  
Author(s):  
Anastasia Panori ◽  
Agustín González-Quel ◽  
Miguel Tavares ◽  
Dimitris Simitopoulos ◽  
Julián Arroyo

During the last decade, there has been an increased interest on cloud computing and especially on the adoption of public cloud services. The process of developing cloud-based public services or migrating existing ones to the Cloud is considered to be of particular interest—as it may require the selection of the most suitable applications as well as their transformation to fit in the new cloud environment. This paper aims at presenting the main findings of a migration process regarding smart city applications to a cloud infrastructure. First, it summarises the methodology along with the main steps followed by the cities of Agueda (Portugal), Thessaloniki (Greece) and Valladolid (Spain) in order to implement this migration process within the framework of the STORM CLOUDS project. Furthermore, it illustrates some crucial results regarding monitoring and validation aspects during the empirical application that was conducted via these pilots. These findings should be received as a helpful experience for future efforts designed by cities or other organisations that are willing to move their applications to the Cloud.


Sign in / Sign up

Export Citation Format

Share Document