Construction of Smart City Information System Based on Cloud Computing and Internet of Things Technology

Author(s):  
Yu Lei ◽  
Lu Zhang
Author(s):  
Kai Zhang

With the development of emerging technology innovations such as the internet of things, classroom management has also shown an informatization trend. Among them, smart classrooms are an important part of the current university information environment construction. The purpose of this article is to build a smart classroom into an intelligent teaching environment with many functions such as intelligent perception and identification, real-time monitoring based on the internet of things technology and cloud computing technology. A questionnaire survey was conducted among freshman students in some majors, and interviews were conducted with the instructors. It was found that 92.19% of the students were satisfied with the classroom learning in the smart classroom environment, and most teachers thought that the teaching effect had been improved. Experiments have proven that the operation of smart classrooms based on the internet of things and cloud computing realizes the intelligence of teaching management services and improves the level of education informationization in schools.


2017 ◽  
Vol 1 (1) ◽  
pp. 1 ◽  
Author(s):  
Dedi Satria ◽  
Syaifuddin Yana ◽  
Rizal Munadi ◽  
Saumi Syahreza

a b s t r a c tThe development of flood early warning technology has grown rapidly. The technology has led to an increase in technology in terms of communication and information. Internet of Things technology (IoTs) has provided a major influence on the development of early warning information system. In this article a protipe-based flood monitoring information system of Google Maps have been designed by integrating Ultrasonic sensors as the height of the detector, the Arduino Uno as a processor, U-Blox GPS modules Neo 6 m GSM module and as the sender of data is the height of the water and the coordinates to the station of the system informais flood. The design of the prototype produces information flood elevations along with location based Google Maps interface.Keywords:Flood, Arduino, Internet of Things Technology (IoTs), Ethernet a b s t r a kPengembangan teknologi peringatan dini banjir telah tumbuh dengan cepat. Teknologi tersebut telah mengarah kepada peningkatan di segi teknologi komunikasi dan informasi. Teknologi Internet of Things (IoTs) telah memberikan pengaruh besar terhadap perkembangan sistem informasi peringatan dini. Didalam artikel ini sebuah protipe sistem informasi monitoring banjir berbasis Google Maps telah dirancang dengan mengintegrasikan sensor ultrasonik sebagai pendeteksi ketinggian, Arduino Uno sebagai pemroses, modul GPS U-Blox Neo 6m dan modul GSM sebagai pengirim data ketinggian air dan koordinat ke stasion sistem informais banjir. Perancangan prototipe menghasilkan informasi ketinggian banjir beserta lokasinya berbasis antarmuka Google Maps.Kata Kunci: Banjir, Arduino, Internet of Things Technology (IoTs), Ethernet


2020 ◽  
Vol 60 (11) ◽  
pp. 16-20
Author(s):  
Vugar Hajimahmud Abdullayev ◽  
◽  
Vusala Alyag Abuzarova ◽  

The article is devoted to the study of cyber security problems in the Smart Cities system. The development of the IT industry has led to the introduction of new technologies into our lives. One of these technologies is the Internet of Things technology. The application of IoT technology has increased in recent years. One of the most important areas in which Internet of Things technology is applied is the Smart Cities system. The main difference between smart cities and other cities is that their components are connected to each other via the Internet. All these smart devices create a smart city system in general. One of the biggest and most important problems in many areas where the Internet is used is security. The article looks at possible security problems in the system of smart cities and solutions to ensure cyber security. Key words: Smart city; Internet of Things; Information technologies; Security; Cyber security


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3488 ◽  
Author(s):  
Wafa Bouaynaya ◽  
Hongbo Lyu ◽  
Zuopeng Zhang

With the growing popularity of Internet of Things (IoT) and Cyber-Physical Systems (CPS), cloud- based systems have assumed a greater important role. However, there lacks formal approaches to modeling the risks transferred through information systems implemented in a cloud-based environment. This paper explores formal methods to quantify the risks associated with an information system and evaluate its variation throughout its implementation. Specifically, we study the risk variation through a quantitative and longitudinal model spanning from the launch of a cloud-based information systems project to its completion. In addition, we propose to redefine the risk estimation method to differentiate a mitigated risk from an unmitigated risk. This research makes valuable contributions by helping practitioners understand whether cloud computing presents a competitive advantage or a threat to the sustainability of a company.


Author(s):  
Mao Chen ◽  
Yong Lin

<span lang="EN-US">T</span><span lang="EN-US">o effectively improve the operation</span><span lang="EN-US">,</span><span lang="EN-US"> management, and service level of the intelligent park, a preliminary study and discussion is conducted on the design and implementation of the Internet of Things (IoT) information system in the intelligent park. Firstly, the hardware architecture and technical scheme of the information system of intelligent park based on Internet of things and cloud computing are proposed, and the information system architecture of the intelligent park is introduced. The construction of the system architecture is based on the three-tier architecture of perception, network and application</span><span lang="EN-US">; secondly, based on this system architecture, the functions of each component of the information system are explained from the perception layer, network layer and application layer, and some typical sensors in the system are introduced; finally, the system is analyzed experimentally.</span><span lang="EN-US">The results show that the system can realize the interconnection among various communication terminals and improve the efficiency of cooperation among various systems.</span><span lang="EN-US">It can be concluded that the information system of the intelligent park based on cloud computing and Internet of things can achieve the desired effect.</span>


Author(s):  
Nathan Nachandiya ◽  
Yusufu Gambo ◽  
Neil’s B. Joel ◽  
Philemon Davwar

The increasing development of intelligent technologies offer opportunities for objects in the real world to communicate using sensors and communication networks. One of the application areas is the smart campus for the smart information system. The construction of the smart campus based on smart technologies such as Bigdata, cloud computing, mobile computing, network infrastructure needs the understanding and the exploration of these technologies in the development process. This conceptual paper explored the roles of smart technologies in developing a smart campus. Analysis of the key concepts; the architectural layers for the smart campus were proposed hoping to promote smart campus information system for a sustainable intelligent campus. The concept could be a platform for developing smart city in a developing context.


2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Zhenzhong Zhang ◽  
Wei Sun ◽  
Yanliang Yu

With the vigorous development of the Internet of Things, the Internet, cloud computing, and mobile terminals, edge computing has emerged as a new type of Internet of Things technology, which is one of the important components of the Industrial Internet of Things. In the face of large-scale data processing and calculations, traditional cloud computing is facing tremendous pressure, and the demand for new low-latency computing technologies is imminent. As a supplementary expansion of cloud computing technology, mobile edge computing will sink the computing power from the previous cloud to a network edge node. Through the mutual cooperation between computing nodes, the number of nodes that can be calculated is more, the types are more comprehensive, and the computing range is even greater. Broadly, it makes up for the shortcomings of cloud computing technology. Although edge computing technology has many advantages and has certain research and application results, how to allocate a large number of computing tasks and computing resources to computing nodes and how to schedule computing tasks at edge nodes are still challenges for edge computing. In view of the problems encountered by edge computing technology in resource allocation and task scheduling, this paper designs a dynamic task scheduling strategy for edge computing with delay-aware characteristics, which realizes the reasonable utilization of computing resources and is required for edge computing systems. This paper proposes a resource allocation scheme combined with the simulated annealing algorithm, which minimizes the overall performance loss of the system while keeping the system low delay. Finally, it is verified through experiments that the task scheduling and resource allocation methods proposed in this paper can significantly reduce the response delay of the application.


Sign in / Sign up

Export Citation Format

Share Document