Two-stage decimation filter design technique for oversampling Δ-Σ A/D converters

Author(s):  
Nianxiong Tan ◽  
S. Eriksson

The motto of this paper is to design and realize decimation filter using CIC filter. The main drawback of this filter is there is large droop in pass band and very less attenuation in stop band. So, to improve the frequency response of CIC filter we go for two stage realization of CIC filter. At the initial stage we use CIC filter and in the last stage we use Kaiser Window and improve the characteristics of filter design. When we design a filter using multistage methodology the order of the filter as well as power also decreases. Tools used are MATLAB Simulink Model and Xilinx system generator and realization is done on Virtex V-XC5VLX110T-3ff136. In this paper the proposed two stage realization is compared with respect to two stages Kaiser window realization in the terms of number of LUT’s required, slices as well as power dissipation and improvements in frequency response with respect to conventional CIC filter are compared


2004 ◽  
Vol 126 (1) ◽  
pp. 215-219 ◽  
Author(s):  
Tarunraj Singh

The focus of this paper is on the design of jerk limited input shapers (time-delay filters). Closed form solutions for the jerk limited time-delay filter for undamped systems is derived followed by the formulation of the problem for damped systems. Since the jerk limited filter involves concatenating an integrator to a time-delay filter, a general filter design technique is proposed where smoothing of the shaped input can be achieved by concatenating transfer functions of first order, harmonic systems, etc.


Author(s):  
Guofei Xiang ◽  
Jianbo Su

Disturbance observer (DOB) based control has been widely applied in industries due to its easy usage but powerful disturbance rejection ability. However, the existence of innate structure constraint, namely the inverse of the nominal plant, prevents its implementation on more general class of systems, such as non-minimum phase plants, MIMO systems etc.. Furthermore, additional limitations exerted on Q-filter design, i.e., unity steady state gain and low-pass nature, which narrow down its solution space largely and prevent from achieving optimal performance even if it exists. In this paper, we present a novel DOB architecture, named generalized disturbance observer (G-DOB), with the help of nontraditional use of the celebrated Youla parametrization of two degree-of-freedom controller. Rigorous analyses show that the novel G-DOB not only inherits all the merits of the conventional one, but also alleviates the limitations stated before partially. By some appropriate system manipulation, the synthesis of Q-filter has been converted to the design of reduced-order controller. Thus, a heuristic two-stage algorithm has been developed with the help of Kalman-Yakubovich-Popov (KYP) lemma: firstly design a full information controller for the augmented system and then compute a reduced-order controller. Numerical examples are presented to demonstrate the effectiveness of the proposed G-DOB structure and design algorithm.


Sign in / Sign up

Export Citation Format

Share Document