A novel RFID tag chip with temperature sensor in standard CMOS process

Author(s):  
Qi Zhang ◽  
Peng Feng ◽  
Shenghua Zhou ◽  
Zhiqing Geng ◽  
Nanjian Wu
2010 ◽  
Vol 18 (21) ◽  
pp. 22215 ◽  
Author(s):  
Gun-Duk Kim ◽  
Hak-Soon Lee ◽  
Chang-Hyun Park ◽  
Sang-Shin Lee ◽  
Boo Tak Lim ◽  
...  

2014 ◽  
Vol 1082 ◽  
pp. 541-546
Author(s):  
Hui Chen ◽  
Wei Ping Jing ◽  
Shao Qing Huang

A new type of silicon semiconductor temperature sensor applied for RFID tag chip is designed based on the linear temperature characteristic of base-emitter voltage of parasitic substrate PNP transistor. A novel switched capacitor integrator based on positive-negative synchronous integration is introduced to amplify the weak temperature signal precisely and provide a method to represent the temperature in analog domain. Temperature quantization is accomplished by a 12-bit ultra-low-power successive approximation analog-to-digital converter providing a resolution of 0.03125°C/LSB. The circuit was simulated by using device model of 0.18-μm CMOS process. The output integration swing is 2VPP and the average current dissipation is 38.91μA at 1.8V supply. The sensor achieves an accuracy of -0.1°C to +0.33°C in the temperature range of -39°C to 89°C.


Author(s):  
Songting Li ◽  
Cong Li ◽  
Lei Cai ◽  
Yu Xiao ◽  
Zhipeng Luo ◽  
...  

2011 ◽  
Vol 25 (5) ◽  
pp. 468-473
Author(s):  
Weifeng Liu ◽  
Yiqi Zhuang ◽  
Zengwei Qi ◽  
Longfei Tang

2013 ◽  
Vol 543 ◽  
pp. 176-179 ◽  
Author(s):  
D.Q. Zhao ◽  
Xia Zhang ◽  
P. Liu ◽  
F. Yang ◽  
C. Lin ◽  
...  

In this work we studied the fabrication of a monolithic bimaterial micro-cantilever resonant IR sensor with on-chip drive circuits. The effects of high temperature process and stress induced performance degradation were investigated. The post-CMOS MEMS (micro electro mechanical system) fabrication process of this IR sensor is the focus of this paper, starting from theoretical analysis and simulation, and then moving to experimental verification. The capacitive cantilever structure was fabricated by surface micromachining method, and drive circuits were prepared by standard CMOS process. While the stress introduced by MEMS films, such as the tensile silicon nitride which works as a contact etch stopper layer for MOSFETs and releasing stop layer for the MEMS structure, increases the electron mobility of NMOS, PMOS hole mobility decreases. Moreover, the NMOS threshold voltage (Vth) shifts, and transconductance (Gm) degrades. An additional step of selective removing silicon nitride capping layer and polysilicon layer upon IC area were inserted into the standard CMOS process to lower the stress in MOSFET channel regions. Selective removing silicon nitride and polysilicon before annealing can void 77% Vth shift and 86% Gm loss.


Author(s):  
Kirill D. Liubavin ◽  
Igor V. Ermakov ◽  
Alexander Y. Losevskoy ◽  
Andrey V. Nuykin ◽  
Alexander S. Strakhov
Keyword(s):  
Rfid Tag ◽  

2018 ◽  
Vol 27 (07) ◽  
pp. 1850116
Author(s):  
Yuanxin Bao ◽  
Wenyuan Li

A high-speed low-supply-sensitivity temperature sensor is presented for thermal monitoring of system on a chip (SoC). The proposed sensor transforms the temperature to complementary to absolute temperature (CTAT) frequency and then into digital code. A CTAT voltage reference supplies a temperature-sensitive ring oscillator, which enhances temperature sensitivity and conversion rate. To reduce the supply sensitivity, an operational amplifier with a unity gain for power supply is proposed. A frequency-to-digital converter with piecewise linear fitting is used to convert the frequency into the digital code corresponding to temperature and correct nonlinearity. These additional characteristics are distinct from the conventional oscillator-based temperature sensors. The sensor is fabricated in a 180[Formula: see text]nm CMOS process and occupies a small area of 0.048[Formula: see text]mm2 excluding bondpads. After a one-point calibration, the sensor achieves an inaccuracy of [Formula: see text][Formula: see text]1.5[Formula: see text]C from [Formula: see text]45[Formula: see text]C to 85[Formula: see text]C under a supply voltage of 1.4–2.4[Formula: see text]V showing a worst-case supply sensitivity of 0.5[Formula: see text]C/V. The sensor maintains a high conversion rate of 45[Formula: see text]KS/s with a fine resolution of 0.25[Formula: see text]C/LSB, which is suitable for SoC thermal monitoring. Under a supply voltage of 1.8[Formula: see text]V, the maximum energy consumption per conversion is only 7.8[Formula: see text]nJ at [Formula: see text]45[Formula: see text]C.


Sign in / Sign up

Export Citation Format

Share Document