cmos mems
Recently Published Documents


TOTAL DOCUMENTS

805
(FIVE YEARS 131)

H-INDEX

33
(FIVE YEARS 4)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniel Popa ◽  
Richard Hopper ◽  
Syed Zeeshan Ali ◽  
Matthew Thomas Cole ◽  
Ye Fan ◽  
...  

AbstractThe gas sensor market is growing fast, driven by many socioeconomic and industrial factors. Mid-infrared (MIR) gas sensors offer excellent performance for an increasing number of sensing applications in healthcare, smart homes, and the automotive sector. Having access to low-cost, miniaturized, energy efficient light sources is of critical importance for the monolithic integration of MIR sensors. Here, we present an on-chip broadband thermal MIR source fabricated by combining a complementary metal oxide semiconductor (CMOS) micro-hotplate with a dielectric-encapsulated carbon nanotube (CNT) blackbody layer. The micro-hotplate was used during fabrication as a micro-reactor to facilitate high temperature (>700 $$^{\circ }$$ ∘ C) growth of the CNT layer and also for post-growth thermal annealing. We demonstrate, for the first time, stable extended operation in air of devices with a dielectric-encapsulated CNT layer at heater temperatures above 600 $$^{\circ }$$ ∘ C. The demonstrated devices exhibit almost unitary emissivity across the entire MIR spectrum, offering an ideal solution for low-cost, highly-integrated MIR spectroscopy for the Internet of Things.


Author(s):  
Horng-Yuan Shih ◽  
Chin-Te Hsin ◽  
Cheng-Wei Yang ◽  
Hsin-Liang Chen ◽  
Jhe-Yuan Kuo

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7486
Author(s):  
Graciano Dieck-Assad ◽  
José Manuel Rodríguez-Delgado ◽  
Omar Israel González Peña

CMOS microelectronics design has evolved tremendously during the last two decades. The evolution of CMOS devices to short channel designs where the feature size is below 1000 nm brings a great deal of uncertainty in the way the microelectronics design cycle is completed. After the conceptual idea, developing a thinking model to understand the operation of the device requires a good “ballpark” evaluation of transistor sizes, decision making, and assumptions to fulfill the specifications. This design process has iterations to meet specifications that exceed in number of the available degrees of freedom to maneuver the design. Once the thinking model is developed, the simulation validation follows to test if the design has a good possibility of delivering a successful prototype. If the simulation provides a good match between specifications and results, then the layout is developed. This paper shows a useful open science strategy, using the Excel software, to develop CMOS microelectronics hand calculations to verify a design, before performing the computer simulation and layout of CMOS analog integrated circuits. The full methodology is described to develop designs of passive components, as well as CMOS amplifiers. The methods are used in teaching CMOS microelectronics to students of electronic engineering with industrial partner participation. This paper describes an exhaustive example of a low-voltage operational transconductance amplifier (OTA) design which is used to design an instrumentation amplifier. Finally, a test is performed using this instrumentation amplifier to implement a front-end signal conditioning device for CMOS-MEMS biomedical applications.


2021 ◽  
Author(s):  
Andrea Lopez-Tapia ◽  
Luis Sanchez-Marquez ◽  
Mario Alfredo Reyes-Barranca ◽  
Griselda Stephany Abarca-Jimenez ◽  
Luis Martin Flores-Nava

2021 ◽  
Author(s):  
Daniel Popa ◽  
Richard Hopper ◽  
Syed Zeeshan Ali ◽  
Matthew Cole ◽  
Ye Fan ◽  
...  

Abstract The gas sensor market is growing fast, driven by many socioeconomic and industrial factors. Mid-infrared (MIR) gas sensors offer excellent performance for an increasing number of sensing applications in healthcare, smart homes, and the automotive sector. Having access to low-cost, miniaturized, energy efficient light sources is of critical importance for the monolithic integration of MIR sensors. Here, we present an on-chip broadband thermal MIR source fabricated by combining a complementary metal oxide semiconductor (CMOS) micro-hotplate with a dielectric-encapsulated carbon nanotube (CNT) blackbody layer. The micro-hotplate was used during fabrication as a micro-reactor to facilitate high temperature (>700 • C) growth of the CNT layer and also for post-growth thermal annealing. We demonstrate, for the first time, stable extended operation in air of devices with a dielectric-encapsulated CNT layer at heater temperatures above 600 • C. The demonstrated devices exhibit almost unitary emissivity across the entire MIR spectrum, offering an ideal solution for low-cost, highly-integrated MIR spectroscopy for the Internet of Sensors.


2021 ◽  
Author(s):  
Osamah Lutf Qaid Al-Mahdi ◽  
A. Y. Ahmed ◽  
J. O. Dennis ◽  
M. H. Md. Khir

Sign in / Sign up

Export Citation Format

Share Document