Signal recovery in PDM optical communication systems employing independent component analysis

Author(s):  
E. S. Rosa ◽  
L. T. Duarte ◽  
J. M. T. Romano ◽  
R. Suyama
Author(s):  
Sargam Parmar ◽  
Bhuvan Unhelkar

In commercial cellular networks, like the systems based on direct sequence code division multiple access (DSCDMA), many types of interferences can appear, starting from multi-user interference inside each sector in a cell to interoperator interference. Also unintentional jamming can be present due to co-existing systems at the same band, whereas intentional jamming arises mainly in military applications. Independent Component Analysis (ICA) use as an advanced pre-processing tool for blind suppression of interfering signals in direct sequence spread spectrum communication systems utilizing antenna arrays. The role of ICA is to provide an interference-mitigated signal to the conventional detection. Several ICA algorithms exist for performing Blind Source Separation (BSS). ICA has been used to extract interference signals, but very less literature is available on the performance, that is, how does it behave in communication environment? This needs an evaluation of its performance in communication environment. This chapter evaluates the performance of some major ICA algorithms like Bell and Sejnowski’s infomax algorithm, Cardoso’s Joint Approximate Diagonalization of Eigen matrices (JADE), Pearson-ICA, and Comon’s algorithm in a communication blind source separation problem. Independent signals representing Sub-Gaussian, Super-Gaussian, and mix users, are generated and then mixed linearly to simulate communication signals. Separation performance of ICA algorithms is measured by performance index.


2020 ◽  
Author(s):  
Yahia Alghorani ◽  
salama Ikki

<div>The aim of this study is to propose a low-complexity algorithm that can be used for the joint sparse recovery of biosignals. The framework of the proposed algorithm supports real-time patient monitoring systems that enhance the detection, tracking, and monitoring of vital signs via wearable biosensors. Specifically, we address the problem of sparse signal recovery and acquisition in wearable biosensor networks, where we develop an efficient computational framework using compressed sensing (CS) and independent component analysis (ICA) to reduce and eliminate artifacts and interference in sparse biosignals. Our analysis and examples indicate that the CS-ICA algorithm helps to develop low-cost, low-power wearable biosensors while improving data quality and accuracy for a given measurement. We also show that, under noisy measurement conditions, the CS-ICA algorithm can outperform the standard CS method, where a biosignal can be retrieved in only a few measurements. By implementing the sensing framework, the error in reconstructing biosignals is reduced, and a digital-to-analog converter operates at low-speed and low-resolution</div>


2012 ◽  
Vol 263-266 ◽  
pp. 1062-1066
Author(s):  
Shuang Zhang ◽  
Zhi Gang Zhu ◽  
Jiang Biao Wu

When several ultra-wide band (UWB) communication systems coexist, multiuser interferences (MUI) are unavoidable. To cope with the MUI of UWB systems, the independent of UWB signals are investigated and a novel receiving method is proposed. At first several antennas are utilized to receive the transmitted signals of different UWB users, and the mixture signals are gained. Then the mixed signals are separated by independent component analysis algorithm to recover the transmitted signals of each UWB users. Finally, the information of each UWB users transmitted is demodulated. Computer simulations show that the proposed method can efficiently resist the interference of different UWB users.


2009 ◽  
Vol 129 (4) ◽  
pp. 601-607
Author(s):  
Shubi F. Kaijage ◽  
Yoshinori Namihira ◽  
Nguyen H. Hai ◽  
Feroza Begum ◽  
S. M. Abdur Razzak ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document