Implementing a Method for Docker Image Security

Author(s):  
Ozkan Sengul ◽  
Hasan Ozkilicaslan ◽  
Emrecan Arda ◽  
Uraz Yavanoglu ◽  
Ibrahim Alper Dogru ◽  
...  
Keyword(s):  
Author(s):  
Ali Saleh Al Najjar

Absolute protection is a difficult issue to maintain the confidentiality of images through their transmission over open channels such as internet or networks and is a major concern in the media, so image Cryptography becomes an area of attraction and interest of research in the field of information security. The paper will offer proposed system that provides a special kinds of image Encryption image security, Cryptography using RSA algorithm for encrypted images by HEX function to extract HEX Code and using RSA public key algorithm, to generate cipher image text. This approach provides high security and it will be suitable for secured transmission of images over the networks or Internet.


2020 ◽  
Vol 167 ◽  
pp. 1291-1299
Author(s):  
P. Karthika ◽  
R. Ganesh Babu ◽  
K. Jayaram

Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 510
Author(s):  
Taiyong Li ◽  
Duzhong Zhang

Image security is a hot topic in the era of Internet and big data. Hyperchaotic image encryption, which can effectively prevent unauthorized users from accessing image content, has become more and more popular in the community of image security. In general, such approaches conduct encryption on pixel-level, bit-level, DNA-level data or their combinations, lacking diversity of processed data levels and limiting security. This paper proposes a novel hyperchaotic image encryption scheme via multiple bit permutation and diffusion, namely MBPD, to cope with this issue. Specifically, a four-dimensional hyperchaotic system with three positive Lyapunov exponents is firstly proposed. Second, a hyperchaotic sequence is generated from the proposed hyperchaotic system for consequent encryption operations. Third, multiple bit permutation and diffusion (permutation and/or diffusion can be conducted with 1–8 or more bits) determined by the hyperchaotic sequence is designed. Finally, the proposed MBPD is applied to image encryption. We conduct extensive experiments on a couple of public test images to validate the proposed MBPD. The results verify that the MBPD can effectively resist different types of attacks and has better performance than the compared popular encryption methods.


Author(s):  
Oluwayomi Adamo ◽  
Saraju P. Mohanty ◽  
Elias Kougianos ◽  
Murali Varanasi ◽  
Wei Cai

2021 ◽  
Vol 35 (1) ◽  
pp. 85-91
Author(s):  
Naga Raju Hari Manikyam ◽  
Munisamy Shyamala Devi

In the contemporary era, technological innovations like cloud computing and Internet of Things (IoT) pave way for diversified applications producing multimedia content. Especially large volumes of image data, in medical and other domains, are produced. Cloud infrastructure is widely used to reap benefits such as scalability and availability. However, security and privacy of imagery is in jeopardy when outsourced it to cloud directly. Many compression and encryption techniques came into existence to improve performance and security. Nevertheless, in the wake of emergence of quantum computing in future, there is need for more secure means with multiple transformations of data. Compressive sensing (CS) used in existing methods to improve security. However, most of the schemes suffer from the problem of inability to perform compression and encryption simultaneously besides ending up with large key size. In this paper, we proposed a framework known as Cloud Image Security Framework (CISF) leveraging outsourced image security. The framework has an underlying algorithm known as Hybrid Image Security Algorithm (HISA). It is based on compressive sensing, simultaneous sensing and encryption besides random pixel exchange to ensure multiple transformations of input image. The empirical study revealed that the CISF is more effective, secure with acceptable compression performance over the state of the art methods.


Protection of digital data is the utmost requirement of the day. Everything in the world is being upgraded to electronic communication and which requires protection against data fraud. Data is nowadays not only text but image, audio video individually and sometimes together as multimedia files. Encryption algorithms protect data against attacks and hackers. This paper proposes a new Sealion Optimization algorithm for enhanced image security, analyses several recent developments in encryption and decryption algorithms and summarizes different approaches, their benefits and limitations.


Sign in / Sign up

Export Citation Format

Share Document