Electron accelerator based on repetitive pulsed Marx generator

Author(s):  
E.N. Abdullin ◽  
A.V. Morozov
Author(s):  
A. Strojnik ◽  
J.W. Scholl ◽  
V. Bevc

The electron accelerator, as inserted between the electron source (injector) and the imaging column of the HVEM, is usually a strong lens and should be optimized in order to ensure high brightness over a wide range of accelerating voltages and illuminating conditions. This is especially true in the case of the STEM where the brightness directly determines the highest resolution attainable. In the past, the optical behavior of accelerators was usually determined for a particular configuration. During the development of the accelerator for the Arizona 1 MEV STEM, systematic investigation was made of the major optical properties for a variety of electrode configurations, number of stages N, accelerating voltages, 1 and 10 MEV, and a range of injection voltages ϕ0 = 1, 3, 10, 30, 100, 300 kV).


1987 ◽  
Vol 48 (C9) ◽  
pp. C9-95-C9-98
Author(s):  
W. LOTZ ◽  
H. GENZ ◽  
A. RICHTER ◽  
W. KNÜPFER ◽  
J. P.F. SELLSCHOP

2019 ◽  
Vol 2019 (4) ◽  
pp. 142-152
Author(s):  
Elena Aleksandrovna Onischuk ◽  
Yurij Aleksandrovich Kurachenko ◽  
Evgenij Sergeevich Matusevich

Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 313
Author(s):  
Jacek Rąbkowski ◽  
Andrzej Łasica ◽  
Mariusz Zdanowski ◽  
Grzegorz Wrona ◽  
Jacek Starzyński

The paper describes major issues related to the design of a portable SiC-based DC supply developed for evaluation of a high-voltage Marx generator. This generator is developed to be a part of an electromagnetic cannon providing very high voltage and current pulses aiming at the destruction of electronics equipment in a specific area. The portable DC supply offers a very high voltage gain: input voltage is 24 V, while the generator requires supply voltages up to 50 kV. Thus, the system contains two stages designed on the basis of SiC power devices operating with frequencies up to 100 kHz. At first, the input voltage is boosted up to 400 V by a non-isolated double-boost converter, and then a resonant DC-DC converter with a special transformer elevates the voltage to the required level. In the paper, the main components of the laboratory setup are presented, and experimental results of the DC supply and whole system are also shown.


Author(s):  
A. Curcio ◽  
M. Bergamaschi ◽  
R. Corsini ◽  
D. Gamba ◽  
W. Farabolini ◽  
...  

2009 ◽  
Vol 45 (1) ◽  
pp. 237-240 ◽  
Author(s):  
Y. Aso ◽  
T. Hashimoto ◽  
T. Abe ◽  
S. Yamada

Sign in / Sign up

Export Citation Format

Share Document