Analysis and Experimental Validation of the Output Voltage and Input Current Performances in Three Phase PWM Boost Rectifiers Under Unbalanced and Distorted Supply Voltage Conditions

Author(s):  
Xinhui Wu ◽  
Sanjib K. Panda ◽  
Jianxin Xu
2017 ◽  
Vol 66 (4) ◽  
pp. 731-743
Author(s):  
Hanuman Prasad ◽  
Tanmoy Maity

Abstract This paper presents the small signal modeling using the state space averaging technique and reliability analysis of a three-phase z-source ac-ac converter. By controlling the shoot-through duty ratio, it can operate in buck-boost mode and maintain desired output voltage during voltage sag and surge condition. It has faster dynamic response and higher efficiency as compared to the traditional voltage regulator. Small signal analysis derives different control transfer functions and this leads to design a suitable controller for a closed loop system during supply voltage variation. The closed loop system of the converter with a PID controller eliminates the transients in output voltage and provides steady state regulated output. The proposed model designed in the RT-LAB and executed in a field programming gate array (FPGA)-based real-time digital simulator at a fixedtime step of 10 μs and a constant switching frequency of 10 kHz. The simulator was developed using very high speed integrated circuit hardware description language (VHDL), making it versatile and moveable. Hardware-in-the-loop (HIL) simulation results are presented to justify the MATLAB simulation results during supply voltage variation of the three phase z-source ac-ac converter. The reliability analysis has been applied to the converter to find out the failure rate of its different components.


Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1133
Author(s):  
Sheikh Tanzim Meraj ◽  
Nor Zaihar Yahaya ◽  
Kamrul Hasan ◽  
Molla Shahadat Hossain Lipu ◽  
Ammar Masaoud ◽  
...  

This research proposes a three-phase six-level multilevel inverter depending on twelve-switch three-phase Bridge and multilevel DC-link. The proposed architecture increases the number of voltage levels with less power components than conventional inverters such as the flying capacitor, cascaded H-bridge, diode-clamped and other recently established multilevel inverter topologies. The multilevel DC-link circuit is constructed by connecting three distinct DC voltage supplies, such as single DC supply, half-bridge and full-bridge cells. The purpose of both full-bridge and half-bridge cells is to provide a variable DC voltage with a common voltage step to the three-phase bridge’s mid-point. A vector modulation technique is also employed to achieve the desired output voltage waveforms. The proposed inverter can operate as a six-level or two-level inverter, depending on the magnitude of the modulation indexes. To guarantee the feasibility of the proposed configuration, the proposed inverter’s prototype is developed, and the experimental results are provided. The proposed inverter showed good performance with high efficiency of 97.59% following the IEEE 1547 standard. The current harmonics of the proposed inverter was also minimized to only 5.8%.


Electronics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1372
Author(s):  
Jun ◽  
Kwak

A switching losses reduction technique for the model predictive control (MPC) algorithm, which uses double-vector in the three-phase rectifier, is presented. The proposed method controls the output voltage of the rectifier by using reference rectifier input voltages with the offset voltage injection to reduce the switching losses. One leg with the largest source current among the three legs in the rectifier is clamped to either the positive or negative output voltage in the proposed method. The proposed method calculates the offset voltage on the basis of the future rectifier input voltages obtained by the reference rectifier input voltage, output voltage, and the source currents in every sampling period, so the clamping region in the leg conducting the largest input current is optimally varied depending on the reference rectifier input voltages and the source currents. Therefore, the proposed method can reduce the switching losses of the rectifier regardless of the different source power factor angle. Due to the effects of clamped legs, the quality of the input current waveform inevitably deteriorated. Thus, in the proposed method, double vectors were utilized to avoid degradation of current qualities and achieved compromised performance by reducing switching losses and keeping the current waveform quality. A performance comparison between the conventional method and the proposed method was made to show performance differences. Additionally, the simulation and experiment were conducted to verify the effectiveness of the proposed method.


2019 ◽  
Vol 139 (11) ◽  
pp. 901-907
Author(s):  
Jumpei Sawada ◽  
Shin-ichi Motegi ◽  
Yoshitaka Nakamura ◽  
Masaki Yamada

2020 ◽  
Vol 8 (4) ◽  
pp. 118
Author(s):  
Vannakone Lounthavong ◽  
Warat Sriwannarat ◽  
Pattasad Seangwong ◽  
Apirat Siritaratiwat ◽  
Pirat Khunkitti

Sign in / Sign up

Export Citation Format

Share Document