Influence of frequency control strategies on induction motor-centrifugal pump unit and its modes

Author(s):  
Petro Gogolyuk ◽  
Vladyslav Lysiak ◽  
Ilya Grinberg
2012 ◽  
Vol 512-515 ◽  
pp. 788-793
Author(s):  
Xiao Hua Zhou ◽  
Ming Qiang Wang ◽  
Wei Wei Zou

Traditional decoupling control strategy of doubly-fed induction generator (DFIG) wind turbine makes little contribution to system inertia and do not participate in the system frequency control, the synchronization of large-scale wind power requires wind turbine have the ability to participate in the regulation of power system frequency. This paper adds a frequency control segment to traditional DFIG wind turbine and considers the doubly-fed wind turbine operating on the state of the super-synchronous speed, by analysis the effect of inertia and proportional control strategies, a fuzzy control strategy which combines the advantages of the former two control strategies is proposed, simulation results show that this control strategy can more effectively improve the system frequency response.


2020 ◽  
Author(s):  
Adhavan Balashanmugham ◽  
Maheswaran Mockaisamy ◽  
Sathiyanathan Murugesan

The asynchronous or Induction Motor (IM) is one of the most widely used electrical machines in the world, due to the three following advantages namely 1.Their construction is simple and rugged 2.The absence of slip rings, commutators and brushes make it cheaper, and 3.It is also maintenance free compared to DC motors and Synchronous motor due to wear and tear of brushes, slip rings and commutators respectively. The Section 1 deals with the introduction of induction motor and Direct Torque Control scheme. Section 2 briefly discusses the types of Induction motor. Section 3 tells about the control strategies of Induction motor respectively scalar control and vector control, and also briefly explains about Direct Torque Control (DTC) method. The Section 4 discuss about the Types of Control Strategies for Torque ripple Reductions in DTC as well as the two proposed schemes namely 1.Fuzzy Logic Controller (FLC) for DTC-SVM and 2.Artificial Neural Network (ANN) controller for DTC-SVM respectively for IM and its results, The two proposed schemes uses Hybrid Asymmetric Space Vector Pulse Width Modulation (HASVPWM) for switching the inverter. The Section 5 revels about the modern advanced techniques such as ANN and FLC based DTC.


2015 ◽  
pp. 29-33
Author(s):  
V. A. Kopyrin ◽  
V. A. Iordan ◽  
O. V. Smirnov

The authors provide a method for compensation of the reactive power inside a well. In the environment Matlab/ Simylink a model was developed of the site of the electrical centrifugal pump unit power supply from the transformer substation. A comparison is made of the proposed method of downhole reactive power compensation with the existing method.


2020 ◽  
Vol 53 (5) ◽  
pp. 601-608
Author(s):  
Arezki Adjati ◽  
Toufik Rekioua ◽  
Djamila Rekioua ◽  
Abdelmounaim Tounzi

This paper discusses the modeling of hybrid Photovoltaic/Fuel cell pumping. This system comprises a photovoltaic generator and a fuel cell, two DC/DC converters, two of inverters which supply a double star induction motor (DSIM) which drives the shaft of a centrifugal pump. The evaluation of the water requirements, the total dynamic head (TDH) and the flow are of great importance to evaluate the various powers allowing the determination of the size of the pumping system. The global proposed system is sized and simulated under Matlab/Simulink Package. The obtained results under different metrological conditions show the effectiveness of the proposed hybrid pumping system.


Sign in / Sign up

Export Citation Format

Share Document