scholarly journals Feasibility Design Study of High-Performance, High-Power-Density Propulsion Motor for Middle-Range Electric Aircraft

Author(s):  
Ahmed Hebala ◽  
Stefano Nuzzo ◽  
Giuseppe Volpe ◽  
Peter H. Connor ◽  
Paolo Giangrande ◽  
...  
2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Wenfu Xie ◽  
Jianming Li ◽  
Yuke Song ◽  
Shijin Li ◽  
Jianbo Li ◽  
...  

AbstractZinc–air batteries (ZABs) hold tremendous promise for clean and efficient energy storage with the merits of high theoretical energy density and environmental friendliness. However, the performance of practical ZABs is still unsatisfactory because of the inevitably decreased activity of electrocatalysts when assembly into a thick electrode with high mass loading. Herein, we report a hierarchical electrocatalyst based on carbon microtube@nanotube core–shell nanostructure (CMT@CNT), which demonstrates superior electrocatalytic activity for oxygen reduction reaction and oxygen evolution reaction with a small potential gap of 0.678 V. Remarkably, when being employed as air–cathode in ZAB, the CMT@CNT presents an excellent performance with a high power density (160.6 mW cm−2), specific capacity (781.7 mAhg Zn −1 ) as well as long cycle stability (117 h, 351 cycles). Moreover, the ZAB performance of CMT@CNT is maintained well even under high mass loading (3 mg cm−2, three times as much as traditional usage), which could afford high power density and energy density for advanced electronic equipment. We believe that this work is promising for the rational design of hierarchical structured electrocatalysts for advanced metal-air batteries.


Author(s):  
Matthew G. Granger ◽  
David Avanesian ◽  
Ralph Jansen ◽  
Susanah R. Kowalewski ◽  
Alex Leary ◽  
...  

RSC Advances ◽  
2020 ◽  
Vol 10 (17) ◽  
pp. 9833-9839
Author(s):  
Changzhen Zhan ◽  
Jianan Song ◽  
Xiaolong Ren ◽  
Yang Shen ◽  
Hui Wu ◽  
...  

Constructing flexible hybrid supercapacitors is a feasible way to achieve devices with high energy density, high power density and flexibility at the same time.


Nano Energy ◽  
2015 ◽  
Vol 11 ◽  
pp. 348-355 ◽  
Author(s):  
Muhammad-Sadeeq Balogun ◽  
Minghao Yu ◽  
Yongchao Huang ◽  
Cheng Li ◽  
Pingping Fang ◽  
...  

Author(s):  
Gun Ho Lee ◽  
Byung Jun Park ◽  
Tae Won Nam ◽  
Ye Ji Kim ◽  
Gyu Rac Lee ◽  
...  

Despite the high power density of ultracapacitors, increasing the energy density to level that of conventional battery systems remains a critical challenge. Here, we report excellent electrochemical performance of three-dimensionally...


2021 ◽  
Vol 2120 (1) ◽  
pp. 012027
Author(s):  
Ling Jin Loong ◽  
Chockalingam Aravind Vaithilingam ◽  
Gowthamraj Rajendran ◽  
Venkatkumar Muneeswaran

Abstract This paper presents a comprehensive study on the switching effects of wide bandgap devices and the importance of power electronics in an aircraft application. Silicon (Si), silicon carbide (SiC), and gallium nitride (GaN) are wide bandgap devices that act as a power electronic switch in the AC-DC converter for More Electric Aircraft (MEA) applications. Therefore, it is important to observe their converting efficiency to identify the most suitable wide bandgap device among three devices for AC-DC converters in aircraft applications to provide high efficiency and high-power density. In this study, the characteristics of Si, SIC, and GaN devices are simulated using PSIM software. Also, this paper presents the performance of the Vienna rectifier for aircraft application. The Vienna rectifier using Si, SiC, and GaN devices are simulated using PSIM software for aircraft application. GaN with Vienna rectifier provides better performance than Si and SiC devices for aircraft applications among the three devices. It gives high efficiency, high power density, low input current THD to meet IEEE-519 standard, and high-power factor at mains.


Sign in / Sign up

Export Citation Format

Share Document