Using fuzzy C-means index matrix to depict for the focal cortical dysplasia region on T1 brain MRI images

Author(s):  
Tsu-Wang Shen ◽  
Yue-Loong Hsin ◽  
Tomor Harnod
BMC Neurology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dong Ah Lee ◽  
Ho-Joon Lee ◽  
Hyung Chan Kim ◽  
Kang Min Park

Abstract Background The aim of this study was to investigate alterations in structural connectivity and structural co-variance network in patients with focal cortical dysplasia (FCD). Methods We enrolled 37 patients with FCD and 35 healthy controls. All subjects underwent brain MRI with the same scanner and with the same protocol, which included diffusion tensor imaging (DTI) and T1-weighted imaging. We analyzed the structural connectivity based on DTI, and structural co-variance network based on the structural volume with T1-weighted imaging. We created a connectivity matrix and obtained network measures from the matrix using the graph theory. We tested the difference in network measure between patients with FCD and healthy controls. Results In the structural connectivity analysis, we found that the local efficiency in patients with FCD was significantly lower than in healthy controls (2.390 vs. 2.578, p = 0.031). Structural co-variance network analysis revealed that the mean clustering coefficient, global efficiency, local efficiency, and transitivity were significantly decreased in patients with FCD compared to those in healthy controls (0.527 vs. 0.635, p = 0.036; 0.545 vs. 0.648, p = 0.026; 2.699 vs. 3.801, p = 0.019; 0.791 vs. 0.954, p = 0.026, respectively). Conclusions We demonstrate that there are significant alterations in structural connectivity, based on DTI, and structural co-variance network, based on the structural volume, in patients with FCD compared to healthy controls. These findings suggest that focal lesions with FCD could affect the whole-brain network and that FCD is a network disease.


2009 ◽  
Vol 25 (11) ◽  
pp. 1501-1506 ◽  
Author(s):  
Kuo-Liang Chiang ◽  
Tai-Tong Wong ◽  
Shan-Young Kwan ◽  
Ting-Rong Hsu ◽  
Chung-Hao Wang ◽  
...  

2020 ◽  
pp. 10.1212/CPJ.0000000000001019
Author(s):  
Adina Achiriloaie ◽  
Jeremy Deisch ◽  
Warren Boling ◽  
Firas Bannout

ABSTRACTPurposeof review: Brain MRI findings of focal cortical dysplasia (FCD) can undergo dramatic changes over time, which may be related to long-term epilepsy or a combination of histopathologic changes that necessitate further investigation.Recent findings:We describe two cases of FCD Type IIb that initially displayed inconspicuous findings on MRI, however progressed to obvious signal changes on subsequent MRI 10-17 years later. Pathologic analysis indicates that the interval changes are likely attributed to reactive astrogliosis and diffuse parenchymal rarefaction. A few case reports and case series showing similar MRI changes have been described in the literature, the majority in pediatric patients. The adult cases we present add to the scientific evidence of these changes occurring in the adult population.Summary:Our observations lead to several clinical suggestions, including closer interval follow up imaging for non-lesional cases, the addition of post-processing imaging methods, earlier surgical intervention, and meticulous surgical planning.


2001 ◽  
Vol 42 (12) ◽  
pp. 839 ◽  
Author(s):  
Kenjiro Gondo ◽  
Ryutaro Kira ◽  
Yoichi Tokunaga ◽  
Chie Harashima ◽  
Shozo Tobimatsu ◽  
...  

2019 ◽  
Vol 24 (3) ◽  
pp. 284-292
Author(s):  
Eisha A. Christian ◽  
Elysa Widjaja ◽  
Ayako Ochi ◽  
Hiroshi Otsubo ◽  
Stephanie Holowka ◽  
...  

OBJECTIVESmall lesions at the depth of the sulcus, such as with bottom-of-sulcus focal cortical dysplasia, are not visible from the surface of the brain and can therefore be technically challenging to resect. In this technical note, the authors describe their method of using depth electrodes as landmarks for the subsequent resection of these exacting lesions.METHODSA retrospective review was performed on pediatric patients who had undergone invasive electroencephalography with depth electrodes that were subsequently used as guides for resection in the period between July 2015 and June 2017.RESULTSTen patients (3–15 years old) met the criteria for this study. At the same time as invasive subdural grid and/or strip insertion, between 2 and 4 depth electrodes were placed using a hand-held frameless neuronavigation technique. Of the total 28 depth electrodes inserted, all were found within the targeted locations on postoperative imaging. There was 1 patient in whom an asymptomatic subarachnoid hemorrhage was demonstrated on postprocedural imaging. Depth electrodes aided in target identification in all 10 cases.CONCLUSIONSDepth electrodes placed at the time of invasive intracranial electrode implantation can be used to help localize, target, and resect primary zones of epileptogenesis caused by bottom-of-sulcus lesions.


Author(s):  
Ghazanfar Latif ◽  
Jaafar Alghazo ◽  
Fadi N. Sibai ◽  
D.N.F. Awang Iskandar ◽  
Adil H. Khan

Background: Variations of image segmentation techniques, particularly those used for Brain MRI segmentation, vary in complexity from basic standard Fuzzy C-means (FCM) to more complex and enhanced FCM techniques. Objective: In this paper, a comprehensive review is presented on all thirteen variations of FCM segmentation techniques. In the review process, the concentration is on the use of FCM segmentation techniques for brain tumors. Brain tumor segmentation is a vital step in the process of automatically diagnosing brain tumors. Unlike segmentation of other types of images, brain tumor segmentation is a very challenging task due to the variations in brain anatomy. The low contrast of brain images further complicates this process. Early diagnosis of brain tumors is indeed beneficial to patients, doctors, and medical providers. Results: FCM segmentation works on images obtained from magnetic resonance imaging (MRI) scanners, requiring minor modifications to hospital operations to early diagnose tumors as most, if not all, hospitals rely on MRI machines for brain imaging. In this paper, we critically review and summarize FCM based techniques for brain MRI segmentation.


Epilepsia ◽  
2001 ◽  
Vol 42 (s6) ◽  
pp. 37-41 ◽  
Author(s):  
Shigeki Kameyama ◽  
Masafumi Fukuda ◽  
Masaru Tomikawa ◽  
Nobuhito Morota ◽  
Makoto Oishi ◽  
...  

Author(s):  
Till S. Zimmer ◽  
Diede W.M. Broekaart ◽  
Mark Luinenburg ◽  
Caroline Mijnsbergen ◽  
Jasper J. Anink ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document