local efficiency
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 24)

H-INDEX

9
(FIVE YEARS 3)

Author(s):  
Qun Sha ◽  
Luizetta Elliott ◽  
Xiangming Zhang ◽  
Tzachi Levy ◽  
Tushar Sharma ◽  
...  

Abstract Purpose Effective identification of electrical drivers within remodeled tissue is a key for improving ablation treatment for atrial fibrillation. We have developed a mutual information, graph-based approach to identify and propose fault tolerance metric of local efficiency as a distinguishing feature of rotational activation and remodeled atrial tissue. Methods Voltage data were extracted from atrial tissue simulations (2D Karma, 3D physiological, and the Multiscale Cardiac Simulation Framework (MSCSF)) using multi-spline open and parallel regional mapping catheter geometries. Graphs were generated based on varied mutual information thresholds between electrode pairs and the local efficiency for each graph was calculated. Results High-resolution mapping catheter geometries can distinguish between rotational and irregular activation patterns using the derivative of local efficiency as a function of increasing mutual information threshold. The derivative is decreased for rotational activation patterns comparing to irregular activations in both a simplified 2D model (0.0017 ± 1 × 10−4 vs. 0.0032 ± 1 × 10−4, p < 0.01) and a more realistic 3D model (0.00092 ± 5 × 10−5 vs. 0.0014 ± 4 × 10−5, p < 0.01). Average local efficiency derivative can also distinguish between degrees of remodeling. Simulations using the MSCSF model, with 10 vs. 90% remodeling, display distinct derivatives in the grid design parallel spline catheter configuration (0.0015 ± 5 × 10−5 vs. 0.0019 ± 6 × 10−5, p < 0.01) and the flower shaped open spline configuration (0.0011 ± 5 × 10−5 vs. 0.0016 ± 4 × 10−5, p < 0.01). Conclusion A decreased derivative of local efficiency characterizes rotational activation and varies with atrial remodeling. This suggests a distinct communication pattern in cardiac rotational activation detectable via high-resolution regional mapping and could enable identification of electrical drivers for targeted ablation.


2021 ◽  
pp. 155005942110514
Author(s):  
Muhammad A. Hasan ◽  
Parisa Sattar ◽  
Saad A. Qazi ◽  
Matthew Fraser ◽  
Aleksandra Vuckovic

Background. Neuropathic pain (NP) following spinal cord injury (SCI) affects the quality of life of almost 40% of the injured population. The modified brain connectivity was reported under different NP conditions. Therefore, brain connectivity was studied in the SCI population with and without NP with the aim to identify networks that are altered due to injury, pain, or both. Methods. The study cohort is classified into 3 groups, SCI patients with NP, SCI patients without NP, and able-bodied. EEG of each participant was recorded during motor imagery (MI) of paralyzed and painful, and nonparalyzed and nonpainful limbs. Phased locked value was calculated using Hilbert transform to study altered functional connectivity between different regions. Results. The posterior region connectivity with frontal, fronto-central, and temporal regions is strongly decreased mainly during MI of dominant upper limb (nonparalyzed and nonpainful limbs) in SCI no pain group. This modified connectivity is prominent in the alpha and high-frequency bands (beta and gamma). Moreover, oscillatory modified global connectivity is observed in the pain group during MI of painful and paralyzed limb which is more evident between fronto-posterior, frontocentral-posterior, and within posterior and within frontal regions in the theta and SMR frequency bands. Cluster coefficient and local efficiency values are reduced in patients with no reported pain group while increased in the PWP group. Conclusion. The altered theta band connectivity found in the fronto-parietal network along with a global increase in local efficiency is a consequence of pain only, while altered connectivity in the beta and gamma bands along with a decrease in cluster coefficient values observed in the sensory-motor network is dominantly a consequence of injury only. The outcomes of this study may be used as a potential diagnostic biomarker for the NP. Further, the expected insight holds great clinical relevance in the design of neurofeedback-based neurorehabilitation and connectivity-based brain–computer interfaces for SCI patients.


BMC Neurology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dong Ah Lee ◽  
Ho-Joon Lee ◽  
Hyung Chan Kim ◽  
Kang Min Park

Abstract Background The aim of this study was to investigate alterations in structural connectivity and structural co-variance network in patients with focal cortical dysplasia (FCD). Methods We enrolled 37 patients with FCD and 35 healthy controls. All subjects underwent brain MRI with the same scanner and with the same protocol, which included diffusion tensor imaging (DTI) and T1-weighted imaging. We analyzed the structural connectivity based on DTI, and structural co-variance network based on the structural volume with T1-weighted imaging. We created a connectivity matrix and obtained network measures from the matrix using the graph theory. We tested the difference in network measure between patients with FCD and healthy controls. Results In the structural connectivity analysis, we found that the local efficiency in patients with FCD was significantly lower than in healthy controls (2.390 vs. 2.578, p = 0.031). Structural co-variance network analysis revealed that the mean clustering coefficient, global efficiency, local efficiency, and transitivity were significantly decreased in patients with FCD compared to those in healthy controls (0.527 vs. 0.635, p = 0.036; 0.545 vs. 0.648, p = 0.026; 2.699 vs. 3.801, p = 0.019; 0.791 vs. 0.954, p = 0.026, respectively). Conclusions We demonstrate that there are significant alterations in structural connectivity, based on DTI, and structural co-variance network, based on the structural volume, in patients with FCD compared to healthy controls. These findings suggest that focal lesions with FCD could affect the whole-brain network and that FCD is a network disease.


Author(s):  
Hong Yang ◽  
Xiao Chen ◽  
Zuo-Bing Chen ◽  
Le Li ◽  
Xue-Ying Li ◽  
...  

AbstractAberrant topological organization of whole-brain networks has been inconsistently reported in studies of patients with major depressive disorder (MDD), reflecting limited sample sizes. To address this issue, we utilized a big data sample of MDD patients from the REST-meta-MDD Project, including 821 MDD patients and 765 normal controls (NCs) from 16 sites. Using the Dosenbach 160 node atlas, we examined whole-brain functional networks and extracted topological features (e.g., global and local efficiency, nodal efficiency, and degree) using graph theory-based methods. Linear mixed-effect models were used for group comparisons to control for site variability; robustness of results was confirmed (e.g., multiple topological parameters, different node definitions, and several head motion control strategies were applied). We found decreased global and local efficiency in patients with MDD compared to NCs. At the nodal level, patients with MDD were characterized by decreased nodal degrees in the somatomotor network (SMN), dorsal attention network (DAN) and visual network (VN) and decreased nodal efficiency in the default mode network (DMN), SMN, DAN, and VN. These topological differences were mostly driven by recurrent MDD patients, rather than first-episode drug naive (FEDN) patients with MDD. In this highly powered multisite study, we observed disrupted topological architecture of functional brain networks in MDD, suggesting both locally and globally decreased efficiency in brain networks.


2021 ◽  
Author(s):  
William SH Kim ◽  
Nicholas J Luciw ◽  
Sarah Atwi ◽  
Zahra Shirzadi ◽  
Sudipto Dolui ◽  
...  

White matter hyperintensities (WMHs) are emblematic of cerebral small vessel disease, yet characterization at midlife is poorly studied. Here, we investigated whether WMH volume is associated with brain network alterations in midlife adults. 254 participants from the Coronary Artery Risk Development in Young Adults (CARDIA) study were selected and stratified by WMH burden yielding two groups of equal size (Lo- and Hi-WMH groups). We constructed group-level covariance networks based on cerebral blood flow (CBF) and grey matter volume (GMV) maps across 74 grey matter regions. Through consensus clustering, we found that both CBF and GMV covariance networks were partitioned into modules that were largely consistent between groups. Next, CBF and GMV covariance network topologies were compared between Lo- and Hi-WMH groups at global (clustering coefficient, characteristic path length, global efficiency) and regional (degree, betweenness centrality, local efficiency) levels. At the global level, there were no group differences in either CBF or GMV covariance networks. In contrast, we found group differences in the regional degree, betweenness centrality, and local efficiency of several brain regions in both CBF and GMV covariance networks. Overall, CBF and GMV covariance analyses provide evidence of WMH-related network alterations that were observed at midlife.


Author(s):  
Biniam Melese Bekele ◽  
Maryse Luijendijk ◽  
Sanne B. Schagen ◽  
Michiel de Ruiter ◽  
Linda Douw

Abstract Purpose This longitudinal study aimed to disentangle the impact of chemotherapy on fatigue and hypothetically associated functional brain network alterations. Methods In total, 34 breast cancer patients treated with chemotherapy (BCC +), 32 patients not treated with chemotherapy (BCC −), and 35 non-cancer controls (NC) were included. Fatigue was assessed using the EORTC QLQ-C30 fatigue subscale at two time points: baseline (T1) and six months after completion of chemotherapy or matched intervals (T2). Participants also underwent resting-state functional magnetic resonance imaging (rsfMRI). An atlas spanning 90 cortical and subcortical brain regions was used to extract time series, after which Pearson correlation coefficients were calculated to construct a brain network per participant per timepoint. Network measures of local segregation and global integration were compared between groups and timepoints and correlated with fatigue. Results As expected, fatigue increased over time in the BCC + group (p = 0.025) leading to higher fatigue compared to NC at T2 (p = 0.023). Meanwhile, fatigue decreased from T1 to T2 in the BCC − group (p = 0.013). The BCC + group had significantly lower local efficiency than NC at T2 (p = 0.033), while a negative correlation was seen between fatigue and local efficiency across timepoints and all participants (T1 rho = − 0.274, p = 0.006; T2 rho = − 0.207, p = 0.039). Conclusion Although greater fatigue and lower local functional network segregation co-occur in breast cancer patients after chemotherapy, the relationship between the two generalized across participant subgroups, suggesting that local efficiency is a general neural correlate of fatigue.


2021 ◽  
Author(s):  
Lucius Samo Fekonja ◽  
Ziqian Wang ◽  
Alberto Cacciola ◽  
Timo Roine ◽  
Baran D. Aydogan ◽  
...  

Gliomas that infiltrate networks and systems, such as the motor system, often lead to substantial functional impairment in multiple systems. Network-based statistics (NBS) allow to 25 assess local network differences (1) and graph theoretical analyses (2) enable investigation of global and local network properties. Here, we used network measures to characterize gliomarelated decreases in structural connectivity by comparing the ipsi- with the contralesional hemispheres of patients and correlated findings with neurological assessment. We found that lesion location resulted in differential impairment of both short and long 30 connectivity patterns. Network analysis showed reduced global and local efficiency in the ipsilesional hemisphere compared to the contralesional hemispheric networks. In network science, reduced global and local efficiency reflect the impairment of information transfer across different regions of a network.


2021 ◽  
pp. 1-9
Author(s):  
Yue Zhu ◽  
Shuai Wang ◽  
Xiaohong Gong ◽  
Elliot K. Edmiston ◽  
Suyu Zhong ◽  
...  

Background Schizophrenia is considered a polygenic disorder. People with schizophrenia and those with genetic high risk of schizophrenia (GHR) have presented with similar neurodevelopmental deficits in hemispheric asymmetry. The potential associations between neurodevelopmental abnormalities and schizophrenia-related risk genes in both schizophrenia and those with GHR remains unclear. Aims To investigate the shared and specific alternations to the structural network in people with schizophrenia and those with GHR. And to identify an association between vulnerable structural network alternation and schizophrenia-related risk genes. Method A total of 97 participants with schizophrenia, 79 participants with GHR and 192 healthy controls, underwent diffusion tensor imaging (DTI) scans at a single site. We used graph theory to characterise hemispheric and whole-brain structural network topological metrics. For 26 people in the schizophrenia group and 48 in the GHR group with DTI scans we also calculated their schizophrenia-related polygenic risk scores (SZ-PRSs). The correlations between alterations to the structural network and SZ-PRSs were calculated. Based on the identified genetic–neural association, bioinformatics enrichment was explored. Results There were significant hemispheric asymmetric deficits of nodal efficiency, global and local efficiency in the schizophrenia and GHR groups. Hemispheric asymmetric deficit of local efficiency was significantly positively correlated with SZ-PRSs in the schizophrenia and GHR groups. Bioinformatics enrichment analysis showed that these risk genes may be linked to signal transduction, neural development and neuron structure. The schizophrenia group showed a significant decrease in the whole-brain structural network. Conclusions The shared asymmetric deficits in people with schizophrenia and those with GHR, and the association between anomalous asymmetry and SZ-PRSs suggested a vulnerability imaging marker regulated by schizophrenia-related risk genes. Our findings provide new insights into asymmetry regulated by risk genes and provides a better understanding of the genetic–neural pathological underpinnings of schizophrenia.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kristi R. Griffiths ◽  
Taylor A. Braund ◽  
Michael R. Kohn ◽  
Simon Clarke ◽  
Leanne M. Williams ◽  
...  

AbstractBehavioural disturbances in attention deficit hyperactivity disorder (ADHD) are thought to be due to dysfunction of spatially distributed, interconnected neural systems. While there is a fast-growing literature on functional dysconnectivity in ADHD, far less is known about the structural architecture underpinning these disturbances and how it may contribute to ADHD symptomology and treatment prognosis. We applied graph theoretical analyses on diffusion MRI tractography data to produce quantitative measures of global network organisation and local efficiency of network nodes. Support vector machines (SVMs) were used for comparison of multivariate graph measures of 37 children and adolescents with ADHD relative to 26 age and gender matched typically developing children (TDC). We also explored associations between graph measures and functionally-relevant outcomes such as symptom severity and prediction of methylphenidate (MPH) treatment response. We found that multivariate patterns of reduced local efficiency, predominantly in subcortical regions (SC), were able to distinguish between ADHD and TDC groups with 76% accuracy. For treatment prognosis, higher global efficiency, higher local efficiency of the right supramarginal gyrus and multivariate patterns of increased local efficiency across multiple networks at baseline also predicted greater symptom reduction after 6 weeks of MPH treatment. Our findings demonstrate that graph measures of structural topology provide valuable diagnostic and prognostic markers of ADHD, which may aid in mechanistic understanding of this complex disorder.


Author(s):  
F. Manyakhin ◽  
R. Levchenko ◽  
L. Mokretsova

The photo scanning method is directed on the physical and mathematical study of the current condition of solar cells (SC). The device for receiving local efficiency of SC has been created. Surface scanning is carried out by the personal computer monitor. Special software has been developed for communicating with the device and controlling the process of receiving data from the SE. The software allows configuring diagnostics, data processing, and storage with a user interface. The configuration includes a choice of the diagnostic algorithm, the number of data reading cycles, and the color of the light spot. The results of the experiment displayed on the monitor screen in matrix form and visualized as an image. The program is designed to work with Windows OS. Experimental tests were carried out on monocrystalline solar cells based on silicon or perovskite. The results showed data repeatability and accuracy.


Sign in / Sign up

Export Citation Format

Share Document