Multilayer Perceptron Approach to PLA, PLA /Copper and PLA / Carbon Substrate Bow-tie Antenna Production

Author(s):  
Gozde Saribas ◽  
Emine Avsar Aydin ◽  
Ahmet Refah Torun
2006 ◽  
Author(s):  
S. Chartier ◽  
P. Renaud ◽  
S. Bouchard ◽  
J. Proulx ◽  
J. L. Rouleau ◽  
...  

1998 ◽  
Vol 37 (4-5) ◽  
pp. 461-464 ◽  
Author(s):  
C. A. Schneider ◽  
K. Mo ◽  
S. N. Liss

Carbon substrate utilization profiles, phenotypic fingerprints, of microbial communities from different pulp and paper effluent treatment systems are being determined using Biolog plates. The substrates from the Biolog GN plates that were deemed to be most significant in differentiating between communities are being employed as substrate panels on Biolog MT plates. Correlative microbiological tests including FAME analysis, heterotrophic plate counts, and epifluorescent microscopy are performed on the samples. By correlating the phenotypic fingerprints to pulp and paper mill processes and operation parameters in the treatment systems, the carbon substrate utilization profile has shown potential as a useful management tool.


2020 ◽  
Vol 20 (9) ◽  
pp. 800-811 ◽  
Author(s):  
Ferath Kherif ◽  
Sandrine Muller

In the past decades, neuroscientists and clinicians have collected a considerable amount of data and drastically increased our knowledge about the mapping of language in the brain. The emerging picture from the accumulated knowledge is that there are complex and combinatorial relationships between language functions and anatomical brain regions. Understanding the underlying principles of this complex mapping is of paramount importance for the identification of the brain signature of language and Neuro-Clinical signatures that explain language impairments and predict language recovery after stroke. We review recent attempts to addresses this question of language-brain mapping. We introduce the different concepts of mapping (from diffeomorphic one-to-one mapping to many-to-many mapping). We build those different forms of mapping to derive a theoretical framework where the current principles of brain architectures including redundancy, degeneracy, pluri-potentiality and bow-tie network are described.


2020 ◽  
Vol 16 (4) ◽  
pp. 625-638
Author(s):  
Leila Samiee ◽  
Sedigheh Sadegh Hassani

Background: Porous carbon materials are promising candidate supports for various applications. In a number of these applications, doping of the carbon framework with heteroatoms provides a facile route to readily tune the carbon properties. The oxygen reduction reaction (ORR), where the reaction can be catalyzed without precious metals is one of the common applications for the heteroatom-doped carbons. Therefore, heteroatom doped catalysts might have a promising potential as a cathode in Microbial fuel cells (MFCs). MFCs have a good potential to produce electricity from biological oxidization of wastes at the anode and chemical reduction at the cathode. To the best of our knowledge, no studies have been yet reported on utilizing Sulfur trioxide pyridine (STP) and CMK-3 for the preparation of (N and S) doped ordered porous carbon materials. The presence of highly ordered mesostructured and the synergistic effect of N and S atoms with specific structures enhance the oxygen adsorption due to improving the electrocatalytic activity. So the optimal catalyst, with significant stability and excellent tolerance of methanol crossover can be a promising candidate for even other storage and conversion devices. Methods: The physico-chemical properties of the prepared samples were determined by Small Angle X-ray Diffraction (SAXRD), N2 sorption-desorption, Transmission Electron Microscopy (TEM), Field Emission Scanning Electron Microscopy (FESEM) and X-ray Photoelectron Spectroscopy (XPS). The prepared samples were further applied for oxygen reduction reaction (ORR) and the optimal cathode was tested with the Microbial Fuel Cell (MFC) system. Furthermore, according to structural analysis, The HRTEM, and SAXRD results confirmed the formation of well-ordered hexagonal (p6mm) arrays of mesopores in the direction of (100). The EDS and XPS approved that N and S were successfully doped into the CMK-3 carbon framework. Results: Among all the studied CMK-3 based catalysts, the catalyst prepared by STP precursor and pyrolysis at 900°C exhibited the highest ORR activity with the onset potential of 1.02 V vs. RHE and 4 electron transfer number per oxygen molecule in 0.1 M KOH. The high catalyst durability and fuel-crossover tolerance led to stable performance of the optimal cathode after 5000 s operation, while the Pt/C cathode-based was considerably degraded. Finally, the MFC system with the optimal cathode displayed 43.9 mW·m-2 peak power density showing even reasonable performance in comparison to a Pt/C 20 wt.%.cathode. Conclusions: The results revealed that the synergistic effect of nitrogen and sulfur co-doped on the carbon substrate structure leads to improvement in catalytic activity. Also, it was clearly observed that the porous structure and order level of the carbon substrate could considerably change the ORR performance.


2016 ◽  
Vol 5 (6) ◽  
pp. 158-162
Author(s):  
Kazuma Endo ◽  
Takayuki Sasamori ◽  
Teruo Tobana ◽  
Yoji Isota

Sign in / Sign up

Export Citation Format

Share Document