New Two-Qubit Gate Library with Entanglement

Author(s):  
Md Belayet Ali ◽  
Takashi Hirayama ◽  
Katsuhisa Yamanaka ◽  
Yasuaki Nishitani
Keyword(s):  
Author(s):  
Kai Li ◽  
Qing-yu Cai

AbstractQuantum algorithms can greatly speed up computation in solving some classical problems, while the computational power of quantum computers should also be restricted by laws of physics. Due to quantum time-energy uncertainty relation, there is a lower limit of the evolution time for a given quantum operation, and therefore the time complexity must be considered when the number of serial quantum operations is particularly large. When the key length is about at the level of KB (encryption and decryption can be completed in a few minutes by using standard programs), it will take at least 50-100 years for NTC (Neighbor-only, Two-qubit gate, Concurrent) architecture ion-trap quantum computers to execute Shor’s algorithm. For NTC architecture superconducting quantum computers with a code distance 27 for error-correcting, when the key length increased to 16 KB, the cracking time will also increase to 100 years that far exceeds the coherence time. This shows the robustness of the updated RSA against practical quantum computing attacks.


2021 ◽  
Vol 11 (23) ◽  
pp. 11309
Author(s):  
Mun Dae Kim

We investigate the galvanic coupling schemes of superconducting flux qubits. From the fundamental boundary conditions, we obtain the effective potential of the coupled system of two or three flux qubits to provide the exact Lagrangian of the system. While usually the two-qubit gate has been investigated approximately, in this study we derive the exact inductive coupling strength between two flux qubits coupled directly and coupled through a connecting central loop. We observe that the inductive coupling strength needs to be included exactly to satisfy the criteria of fault-tolerant quantum computing.


2015 ◽  
Vol 17 (4) ◽  
pp. 043008 ◽  
Author(s):  
I Cohen ◽  
S Weidt ◽  
W K Hensinger ◽  
A Retzker
Keyword(s):  

2012 ◽  
Vol 86 (4) ◽  
Author(s):  
L. G. E. Arruda ◽  
F. F. Fanchini ◽  
R. d. J. Napolitano ◽  
J. E. M. Hornos ◽  
A. O. Caldeira

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
K. Wright ◽  
K. M. Beck ◽  
S. Debnath ◽  
J. M. Amini ◽  
Y. Nam ◽  
...  

AbstractThe field of quantum computing has grown from concept to demonstration devices over the past 20 years. Universal quantum computing offers efficiency in approaching problems of scientific and commercial interest, such as factoring large numbers, searching databases, simulating intractable models from quantum physics, and optimizing complex cost functions. Here, we present an 11-qubit fully-connected, programmable quantum computer in a trapped ion system composed of 13 171Yb+ ions. We demonstrate average single-qubit gate fidelities of 99.5$$\%$$%, average two-qubit-gate fidelities of 97.5$$\%$$%, and SPAM errors of 0.7$$\%$$%. To illustrate the capabilities of this universal platform and provide a basis for comparison with similarly-sized devices, we compile the Bernstein-Vazirani and Hidden Shift algorithms into our native gates and execute them on the hardware with average success rates of 78$$\%$$% and 35$$\%$$%, respectively. These algorithms serve as excellent benchmarks for any type of quantum hardware, and show that our system outperforms all other currently available hardware.


2008 ◽  
Vol 53 (3) ◽  
pp. 775-779 ◽  
Author(s):  
Paulo Sergio Pereira da Silva ◽  
Pierre Rouchon
Keyword(s):  

2008 ◽  
Vol 06 (06) ◽  
pp. 1223-1230 ◽  
Author(s):  
WEN-ZHEN CAO ◽  
LI-JIE TIAN ◽  
HUI-JUAN JIANG ◽  
CHONG LI

We propose a scenario to realize quantum computers utilizing heteronuclear diatomic rovibrational states as qubits. We focused on rovibrational qubits created by simple transform limited infrared laser pulse instead of using chirped pulse. Numerical calculations show that single qubit gate operation in the electronic ground state of LiH molecule can be obtained. We also discuss the effect of temperature on the initially rotational states, and a suitable experiment condition is indicated.


2010 ◽  
Vol 81 (5) ◽  
Author(s):  
E. Paladino ◽  
A. Mastellone ◽  
A. D’Arrigo ◽  
G. Falci

Sign in / Sign up

Export Citation Format

Share Document