12.5 An error-based controlled single-inductor 10-output DC-DC buck converter with high efficiency at light load using adaptive pulse modulation

Author(s):  
Min-yong Jung ◽  
Sang-hui Park ◽  
Jun-suk Bang ◽  
Dong-chul Park ◽  
Se-un Shin ◽  
...  

DC-DC buck boost converter is a conversion circuit using induced frequency inductors, switching.DC-DC converters dynamics was improved by using self calibrated preemptive current control. As, a result Preemptive concurrent control reduces capacitor size by 10x.DC DC buck converter with pulse width modulation.DC-DC buck converter with two step pulse width modulation was utilized for low power application by using delay, control line. Main motive of DC-DC buck converter with pulse width modulations obtains high linearity, high granularity. Conversion efficiency for Light load current was increased in buck converter by clocked hysteresis scheme. Power supplied to comparator was scaled to load easily. Conventional buck converter was integrated with LED to expand smart bulb. Main power from supply was decoupled by Non linear ramp control scheme preventing LED output flickering. Control scheme effectiveness was improved by small signal model. Three major characteristics of Light emitting diodes are improved lifetime, high efficiency, increased reliability, controllability. High brightness LED by multicell three phases was used for its lower cost. Heart beat was identified by using raspberry pi, system on chip with three stages in it namely Heart beat determination, Impedence, cardiography parameters. Accidents was restricted by this method.Overspeeding vehicles was identified was main goal of using complex proportional assessment method. Converting Rice husk into bio fuels was performed by thermo chemical processes. Rice hulk silica was utilized for fluorescent silica particles synthesis.


2016 ◽  
Vol 25 (11) ◽  
pp. 1650136 ◽  
Author(s):  
Zhaohan Li ◽  
Yongcheng Ji ◽  
Shu Yang ◽  
Yuchun Chang

This paper proposes a high-voltage high-efficiency peak-current-mode asynchronous DC–DC step-down converter operating with dual operation modes. The asynchronous buck converter achieves higher efficiency in light load condition compared to synchronous buck converters. Furthermore, the proposed buck converter switches operation mode automatically from pulse-width modulation (PWM) mode to pulse-skipping mode (PSM). By reducing power MOS on-state resistance and optimizing rise/fall time of switches, the proposed buck converter also obtains high efficiency under heavy load condition. The maximum efficiency of the proposed buck converter is 92.9%, implemented with 0.35[Formula: see text][Formula: see text]m BCDMOS 2P3M process, and the total size is 1.1[Formula: see text] 1.2[Formula: see text]mm2. The input range and output range of the converter are 6–30 V, and ([Formula: see text]–3) V, respectively, with the maximum output current of 3 A. Moreover, its built-in current loop leads to good transient response characteristics. Therefore, it can be used widely in communication system and 12 V/24 V distributed power system.


Sign in / Sign up

Export Citation Format

Share Document