scholarly journals An On-Chip PWM-Based DC-DC Buck Converter Design with High- Efficiency Light Load Mode Operation

DC-DC buck boost converter is a conversion circuit using induced frequency inductors, switching.DC-DC converters dynamics was improved by using self calibrated preemptive current control. As, a result Preemptive concurrent control reduces capacitor size by 10x.DC DC buck converter with pulse width modulation.DC-DC buck converter with two step pulse width modulation was utilized for low power application by using delay, control line. Main motive of DC-DC buck converter with pulse width modulations obtains high linearity, high granularity. Conversion efficiency for Light load current was increased in buck converter by clocked hysteresis scheme. Power supplied to comparator was scaled to load easily. Conventional buck converter was integrated with LED to expand smart bulb. Main power from supply was decoupled by Non linear ramp control scheme preventing LED output flickering. Control scheme effectiveness was improved by small signal model. Three major characteristics of Light emitting diodes are improved lifetime, high efficiency, increased reliability, controllability. High brightness LED by multicell three phases was used for its lower cost. Heart beat was identified by using raspberry pi, system on chip with three stages in it namely Heart beat determination, Impedence, cardiography parameters. Accidents was restricted by this method.Overspeeding vehicles was identified was main goal of using complex proportional assessment method. Converting Rice husk into bio fuels was performed by thermo chemical processes. Rice hulk silica was utilized for fluorescent silica particles synthesis.


2016 ◽  
Vol 25 (11) ◽  
pp. 1650136 ◽  
Author(s):  
Zhaohan Li ◽  
Yongcheng Ji ◽  
Shu Yang ◽  
Yuchun Chang

This paper proposes a high-voltage high-efficiency peak-current-mode asynchronous DC–DC step-down converter operating with dual operation modes. The asynchronous buck converter achieves higher efficiency in light load condition compared to synchronous buck converters. Furthermore, the proposed buck converter switches operation mode automatically from pulse-width modulation (PWM) mode to pulse-skipping mode (PSM). By reducing power MOS on-state resistance and optimizing rise/fall time of switches, the proposed buck converter also obtains high efficiency under heavy load condition. The maximum efficiency of the proposed buck converter is 92.9%, implemented with 0.35[Formula: see text][Formula: see text]m BCDMOS 2P3M process, and the total size is 1.1[Formula: see text] 1.2[Formula: see text]mm2. The input range and output range of the converter are 6–30 V, and ([Formula: see text]–3) V, respectively, with the maximum output current of 3 A. Moreover, its built-in current loop leads to good transient response characteristics. Therefore, it can be used widely in communication system and 12 V/24 V distributed power system.


Nanophotonics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 3357-3365 ◽  
Author(s):  
Shaohua Dong ◽  
Qing Zhang ◽  
Guangtao Cao ◽  
Jincheng Ni ◽  
Ting Shi ◽  
...  

AbstractPlasmons, as emerging optical diffraction-unlimited information carriers, promise the high-capacity, high-speed, and integrated photonic chips. The on-chip precise manipulations of plasmon in an arbitrary platform, whether two-dimensional (2D) or one-dimensional (1D), appears demanding but non-trivial. Here, we proposed a meta-wall, consisting of specifically designed meta-atoms, that allows the high-efficiency transformation of propagating plasmon polaritons from 2D platforms to 1D plasmonic waveguides, forming the trans-dimensional plasmonic routers. The mechanism to compensate the momentum transformation in the router can be traced via a local dynamic phase gradient of the meta-atom and reciprocal lattice vector. To demonstrate such a scheme, a directional router based on phase-gradient meta-wall is designed to couple 2D SPP to a 1D plasmonic waveguide, while a unidirectional router based on grating metawall is designed to route 2D SPP to the arbitrarily desired direction along the 1D plasmonic waveguide by changing the incident angle of 2D SPP. The on-chip routers of trans-dimensional SPP demonstrated here provide a flexible tool to manipulate propagation of surface plasmon polaritons (SPPs) and may pave the way for designing integrated plasmonic network and devices.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 239
Author(s):  
Yineng Wang ◽  
Xi Cao ◽  
Walter Messina ◽  
Anna Hogan ◽  
Justina Ugwah ◽  
...  

Capillary electrochromatography (CEC) is a separation technique that hybridizes liquid chromatography (LC) and capillary electrophoresis (CE). The selectivity offered by LC stationary phase results in rapid separations, high efficiency, high selectivity, minimal analyte and buffer consumption. Chip-based CE and CEC separation techniques are also gaining interest, as the microchip can provide precise on-chip control over the experiment. Capacitively coupled contactless conductivity detection (C4D) offers the contactless electrode configuration, and thus is not in contact with the solutions under investigation. This prevents contamination, so it can be easy to use as well as maintain. This study investigated a chip-based CE/CEC with C4D technique, including silicon-based microfluidic device fabrication processes with packaging, design and optimization. It also examined the compatibility of the silicon-based CEC microchip interfaced with C4D. In this paper, the authors demonstrated a nanofabrication technique for a novel microchip electrochromatography (MEC) device, whose capability is to be used as a mobile analytical equipment. This research investigated using samples of potassium ions, sodium ions and aspirin (acetylsalicylic acid).


Sign in / Sign up

Export Citation Format

Share Document