The utilization of the displacement sensor system to estimate cavities in dentures based on optical imaging

Author(s):  
Retna Apsari ◽  
Kristia Ningsih ◽  
M. Yasin Physics
2019 ◽  
Vol 11 (2) ◽  
pp. 133-141 ◽  
Author(s):  
Chengrong Guo ◽  
Mingjie Ma ◽  
Dongxing Yuan ◽  
Yongming Huang ◽  
Kunning Lin ◽  
...  

A novel sensor system, which integrated sampling, enrichment, and in situ measurement of dissolved Fe(ii) in sediment pore water, was developed.


Author(s):  
J-W Kim ◽  
J-H Shin

Seam tracking systems for the arc welding process use various kinds of sensor including the arc sensor, vision sensor and laser displacement sensor. Among the various sensors available, the electromagnetic sensor is one of the most useful methods, especially in sheet metal butt-joint arc welding, primarily because it is hardly affected by the intense arc light and fumes generated during the welding process, or by the surface conditions of the weldment such as paint marks and scratches. In this study, a dual-electromagnetic sensor, which utilizes the induced current variation in the sensing coil due to the eddy current variation in the metal near the sensor, was developed for the arc welding of sheet metal I-butt joints. The dual-electromagnetic sensor thus detects the offset displacement of the weld line from the centre of the sensor head, even when there is no gap in the joint. A set of design variables for the sensor was examined to determine the maximum sensing capability through repeated experiments. Seam tracking was performed by correcting the position of the sensor to the amount of offset displacement determined during each sampling period. From the experimental results, the developed sensor system showed an excellent capability for weld seam detection and tracking when the sensor-to-workpiece distance was less than 5mm.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Jinlei Zhao ◽  
Tengfei Bao ◽  
Tribikram Kundu

A wide range fiber optic sensor system for displacement and crack monitoring is developed. In the proposed fiber optic sensor system, a number of fiber loops are formed from a single fiber and each fiber loop is used as a crack or displacement sensor. The feasibility and the dynamic range of the fiber sensor developed in this manner are investigated experimentally. Both glass fibers and plastic fibers are used in the experiments. Experimental results show that the new fiber optic sensor has a wide range (maximum range is 88 mm) and this sensor also has a high sensitivity for displacement and crack monitoring when an appropriate diameter of the fiber loop is selected as the sensor. Moreover, the proposed method is very simple and has low cost, so in situ application potential of the proposed sensor is high.


Sign in / Sign up

Export Citation Format

Share Document