Closed form of performance analysis of decode and forward relaying over the Generalized-K channels

Author(s):  
Ali Dziri ◽  
Didier Le Ruyet ◽  
Daniel Roviras ◽  
Michel Terre
2021 ◽  
Author(s):  
Kehinde O Odeyemi ◽  
Pius A. Owolawi ◽  
Oladayo O. Olakanmi

Abstract In this paper, the performance analysis of a reconfigurable intelligent surface (RIS) in a dual-hop decode-and-forward (DF) relay empowered asymmetric radio frequency (RF)/free space optical (FSO) systems is presented. The RIS-assisted RF network is subjected to Nakagami-m distribution while the RIS-assisted FSO networks experience Gamma-Gamma distribution in which both atmospheric turbulence and pointing errors are considered. Thus, the closed-form expressions for the system outage probability and average bit error rate (ABER) are derived with limited number of reflecting elements at RIS-assisted RF network and multiple number of reflecting elements at RIS-assisted FSO network. Further, to obtain more insight about the system characteristic, the asymptotic closed-form expressions are derived at high signal-to-noise ratio (SNR) for the system performance metrics. The results illustrate the impact of the system and channel parameters on the proposed system in terms of atmospheric turbulence, pointing errors under beam width condition, m-fading parameter, and number of reflecting elements. The correctness of the derived analytical expressions is validated via the Monte-Carlo simulations.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Inam Ullah ◽  
Alexis Dowhuszko ◽  
Zhong Zheng ◽  
David González González ◽  
Jyri Hämäläinen

This paper studies the end-to-end (e2e) data rate of dual-hop Decode-and-Forward (DF) infrastructure relaying under different resource allocation schemes. In this context, we first provide a comparative analysis of the optimal resource allocation scheme with respect to several other approaches in order to provide insights into the system behavior and show the benefits of each alternative. Then, assuming the optimal resource allocation, a closed form expression for the distribution of the mean and outage data rates is derived. It turns out that the corresponding mean e2e data rate formula attains an expression in terms of an integral that does not admit a closed form solution. Therefore, a tight lower bound formula for the mean e2e data rate is presented. Results can be used to select the most convenient resource allocation scheme and perform link dimensioning in the network planning phase, showing the explicit relationships that exist between component link bandwidths, SNR values, and mean data rate.


2021 ◽  
Author(s):  
Anand Jee ◽  
KAMAL AGRAWAL ◽  
Shankar Prakriya

This paper investigates the performance of a framework for low-outage downlink non-orthogonal multiple access (NOMA) signalling using a coordinated direct and relay transmission (CDRT) scheme with direct links to both the near-user (NU) and the far-user (FU). Both amplify-and-forward (AF) and decode-and-forward (DF) relaying are considered. In this framework, NU and FU combine the signals from BS and R to attain good outage performance and harness a diversity of two without any need for feedback. For the NU, this serves as an incentive to participate in NOMA signalling. For both NU and FU, expressions for outage probability and throughput are derived in closed form. High-SNR approximations to the outage probability are also presented. We demonstrate that the choice of power allocation coefficient and target rate is crucial to maximize the NU performance while ensuring a desired FU performance. We demonstrate performance gain of the proposed scheme over selective decode-and-forward (SDF) CDRT-NOMA in terms of three metrics: outage probability, sum throughput and energy efficiency. Further, we demonstrate that by choosing the target rate intelligently, the proposed CDRT NOMA scheme ensures higher energy efficiency (EE) in comparison to its orthogonal multiple access counterpart. Monte Carlo simulations validate the derived expressions.


Sign in / Sign up

Export Citation Format

Share Document