An airborne Position and Orientation System (POS) for remote sensing and its current state

Author(s):  
Zhai Fengguang ◽  
Jianli Li ◽  
Ye Wen ◽  
Gu Bin ◽  
Lu Zhaoxing ◽  
...  
Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4932
Author(s):  
Zhuangsheng Zhu ◽  
Hao Tan ◽  
Yue Jia ◽  
Qifei Xu

The Position and Orientation System (POS) is the core device of high-resolution aerial remote sensing systems, which can obtain the real-time object position and collect target attitude information. The goal of exceeding 0.015°/0.003° of its real-time heading/attitude measurement accuracy is unlikely to be achieved without gravity disturbance compensation. In this paper, a high-precision gravity data architecture for gravity disturbance compensation technology is proposed, and a gravity database with accuracy better than 1 mGal is constructed in the test area. Based on the “Block-Time Variation” Markov Model (B-TV-MM), a gravity disturbance compensation device is developed. The gravity disturbance compensation technology is applied to POS products for the first time, and is applied in the field of aerial remote sensing. Flight test results show that the heading accuracy and attitude accuracy of POS products are improved by at least 6% and 16%, respectively. The device can be used for the gravity disturbance compensation of various inertial technology products.


2017 ◽  
Vol 71 (3) ◽  
pp. 711-728 ◽  
Author(s):  
Zhuangsheng Zhu ◽  
Yiyang Guo ◽  
Wen Ye

Motion compensation is a significant part of an airborne remote sensing system. A Position and Orientation System (POS) can directly measure the motion information of an airborne remote sensing payload that can improve the quality of airborne remote sensing images. Gravity disturbance, information on which is often ignored due to being difficult to acquire in real-time, has become the main error source of POS in the development of inertial components. In this paper, a new real-time gravity compensation method is proposed, which includes the gravity disturbance as the error states of a POS Kalman filter, and an accurate gravity disturbance model is constructed using a time-varying Gaussian-Markov model based on a high-precision gravity map, whose resolution is enhanced by a new interpolation method based on Gaussian Process Regression (GPR). A flight experiment was conducted to evaluate the efficiency of the proposed method and the results showed that the proposed method performs well when compared with other real-time gravity compensation methods.


2021 ◽  
Vol 262 ◽  
pp. 112482
Author(s):  
Remika S. Gupana ◽  
Daniel Odermatt ◽  
Ilaria Cesana ◽  
Claudia Giardino ◽  
Ladislav Nedbal ◽  
...  

2018 ◽  
Vol 7 (12) ◽  
pp. 458 ◽  
Author(s):  
Peter Fischer ◽  
Seyed Majid Azimi ◽  
Robert Roschlaub ◽  
Thomas Krauß

The upraise of autonomous driving technologies asks for maps characterized bya broad range of features and quality parameters, in contrast to traditional navigation maps which in most cases are enriched graph-based models. This paper tackles several uncertainties within the domain of HD Maps. The authors give an overview about the current state in extracting road features from aerial imagery for creating HD maps, before shifting the focus of the paper towards remote sensing technology. Possible data sources and their relevant parameters are listed. A random forest classifier is used, showing how these data can deliver HD Maps on a country-scale, meeting specific quality parameters.


2019 ◽  
Vol 75 ◽  
pp. 02005
Author(s):  
Elena Fedotova

The current state of the land cover has been estimated in the territories where in different years (1885, 1955, 1995) the forests were damaged by Siberian silkmoth. Dark-needle taiga is restored through the change of tree species. In 20 years in areas of dark-needle taiga there are graminoid communities, in 60 years we have deciduous forests there, and in 130 - dark needle forests, but not everywhere.


Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 650
Author(s):  
Gennady V. Golubkov ◽  
Mikhail I. Manzhelii ◽  
Alexandr A. Berlin ◽  
Lev V. Eppelbaum ◽  
Alexey A. Lushnikov ◽  
...  

The main problems of remote sensing of the Earth’s surface within the frequency range 1.2–1.6 GHz are discussed. They are related to the resonant quantum properties of the radio wave propagation medium in the lower ionosphere. It is shown that, for the passive remote sensing, the main source is incoherent microwave radiation of the D and E ionospheric layers in the decimeter range. For the first time, a theoretically grounded principally new scheme of measurements is suggested. The scheme assumes that the radiation source exists below the satellite orbit and accounts for the fact that two types of radiation (direct and reflected) reach the satellite sensor. The separation of the respective fluxes is a serious problem that should be solved for the correct interpretation of the measurements. The question is raised regarding the correct calibration of measuring equipment, depending on the current state of the ionosphere.


Sign in / Sign up

Export Citation Format

Share Document