Joint Uplink and Downlink Transmission Design for URLLC Using Finite Blocklength Codes

Author(s):  
Chao Shen ◽  
Tsung-Hui Chang ◽  
Hanqing Xu ◽  
Yajun Zhao
2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Cong-Nam Tran ◽  
Nam-Hoang Nguyen ◽  
Trong-Minh Hoang

AbstractVisible light communications (VLC) is considered as an alternative communications technology for providing indoor wireless services. VLC systems are expected to offer high data transmission rate and seamless coverage. In order to achieve these requirements, VLC systems utilizing multi-lightbeam access points (multibeam VLC-AP) for downlink transmission have been proposed recently. In this paper, we present a lightbeam configuration method and an interference elimination resource scheduling mechanism (IERS) for indoor multibeam multi-access point VLC systems. The proposed lightbeam configuration method ensures seamless connectivity between user equipment and VLC-AP. The proposed IERS mechanism consists of a beam assignment algorithm and a resource allocation algorithm for eliminating co-channel interference as well as improving system performance. Performance results obtained by computer simulation indicate that there are significant improvements in terms of downlink signal to interference plus noise ratio, user throughput and packet delay when the proposed IERS mechanism is deployed.


Author(s):  
Francisco R. Castillo-Soria ◽  
Carlos A. Gutierrez ◽  
Abel García-Barrientos ◽  
Armando Arce-Casas ◽  
Jorge Simón

Author(s):  
Tong Shen ◽  
Tingting Liu ◽  
Yan Lin ◽  
Yongpeng Wu ◽  
Feng Shu ◽  
...  

Abstract In this paper, two regional robust secure precise wireless transmission (SPWT) schemes for multi-user unmanned aerial vehicle (UAV), (1)regional signal-to-leakage-and-noise ratio (SLNR) and artificial-noise-to-leakage-and-noise ratio (ANLNR) (R-SLNR-ANLNR) maximization and (2) point SLNR and ANLNR (P-SLNR-ANLNR) maximization, are proposed to tackle with the estimation errors of the target users’ location. In the SPWT system, the estimation error for SPWT cannot be ignored. However, the conventional robust methods in secure wireless communications optimize the beamforming vector in the desired positions only in statistical means and cannot guarantee the security for each symbol. The proposed regional robust schemes are designed for optimizing the secrecy performance in the whole error region around the estimated location. Specifically, with the known maximal estimation error, we define the target region and wiretap region. Then, we design an optimal beamforming vector and an artificial noise projection matrix, which achieve the confidential signal in the target area having the maximal power while only few signal power is conserved in the potential wiretap region. Instead of considering the statistical distributions of the estimated errors into optimization, we optimize the SLNR and ANLNR of the whole target area, which significantly decreases the complexity. Moreover, the proposed schemes can ensure that the desired users are located in the optimized region, which are more practical than the conventional methods. Simulation results show that our proposed regional robust SPWT design is capable of substantially improving the secrecy rate compared to the conventional non-robust method. The P-SLNR-ANLNR maximization-based method has the comparable secrecy performance with lower complexity than that of the R-SLNR-ANLNR maximization-based method.


Sign in / Sign up

Export Citation Format

Share Document