Intelligent Management and Control Model of Secret Carriers Based on Context-aware

Author(s):  
Hongshan Kong ◽  
Jun Tang ◽  
Bin Yu
2010 ◽  
Vol 108-111 ◽  
pp. 1158-1163 ◽  
Author(s):  
Peng Cheng Nie ◽  
Di Wu ◽  
Weiong Zhang ◽  
Yan Yang ◽  
Yong He

In order to improve the information management of the modern digital agriculture, combined several modern digital agriculture technologies, namely wireless sensor network (WSN), global positioning system (GPS), geographic information system (GIS) and general packet radio service (GPRS), and applied them to the information collection and intelligent control process of the modern digital agriculture. Combining the advantage of the local multi-channel information collection and the low-power wireless transmission of WSN, the stable and low cost long-distance communication and data transmission ability of GPRS, the high-precision positioning technology of the DGPS positioning and the large-scale field information layer-management technology of GIS, such a hybrid technology combination is applied to the large-scale field information and intelligent management. In this study, wireless sensor network routing nodes are disposed in the sub-area of field. These nodes have GPS receiver modules and the electric control mechanism, and are relative positioned by GPS. They can real-time monitor the field information and control the equipment for the field application. When the GPS position information and other collected field information are measured, the information can be remotely transmitted to PC by GPRS. Then PC can upload the information to the GIS management software. All the field information can be classified into different layers in GIS and shown on the GIS map based on their GPS position. Moreover, we have developed remote control software based on GIS. It can send the control commands through GPRS to the nodes which have control modules; and then we can real-time manage and control the field application. In conclusion, the unattended automatic wireless intelligent technology for the field information collection and control can effectively utilize hardware resources, improve the field information intelligent management and reduce the information and intelligent cost.


Author(s):  
Benling Hu ◽  
Le Yang ◽  
Chan Wei ◽  
Min Luo

ABSTRACT Objective: To evaluate the management mode for the prevention and control of coronavirus 2019 (COVID-19) transmission utilized at a general hospital in Shenzhen, China, with the aim to maintain the normal operation of the hospital. Methods: From January 2, 2020 to April 23, 2020, Hong Kong–Shenzhen Hospital, a tertiary hospital in Shenzhen, has operated a special response protocol named comprehensive pandemic prevention and control model, which mainly includes six aspects: 1) human resource management; 2) equipment management; 3) logistics management; 4) cleaning, disinfection and process reengineering; 5) environment layout; 6) and training and assessment. The detail of every aspect was described and its efficiency was evaluated. Results: A total of 198,802 patients were received. Of those, 10,821 were hospitalized; 26,767 were received by the emergency department and fever clinics; 288 patients were admitted for observation with fever; and 324 were admitted as suspected cases for isolation. Under the protocol of comprehensive pandemic prevention and control model, no case of hospital-acquired infection with COVID-19 occurred among the inpatients or staff. Conclusion: The present comprehensive response model may be useful in large public health emergencies to ensure appropriate management and protect the health and life of individuals.


2011 ◽  
Vol 20 (07) ◽  
pp. 1211-1230 ◽  
Author(s):  
HYUN SANG CHO ◽  
TAKEKAZU KATO ◽  
TATSUYA YAMAZAKI ◽  
MINSOO HAHN

The home network is one of the emerging areas from the last century. However, the growth of the home network market is stationary at present. This paper describes the limitations of the home network system and the requirements for overcoming the current limitations. Also described is a new home network service system known as COWS and its easy installation and scalable operation. COWS consists of power consumption monitor and control devices along with a service server that is a complementary combination of Open Service Gateway initiative (OSGi) and web services. A home network system has a dynamic, heterogeneous, distributed, and scalable topology. Service Oriented Architecture (SOA) has been proposed as a solution that satisfies the requirement of a home network, and OSGi and web services are two successful SOA-based frameworks. An included service server has a flexible architecture that consists of a core and extendable service packages. A power consumption monitor and control function provides useful context information for activity-based context-aware services and optimizes the power consumption. The system can be installed easily into existing and new houses to solve the current barrier of the popularization of home network services.


2014 ◽  
Vol 521 ◽  
pp. 252-255
Author(s):  
Jian Yuan Xu ◽  
Jia Jue Li ◽  
Jie Jun Zhang ◽  
Yu Zhu

The problem of intermittent generation peaking is highly concerned by the grid operator. To build control model for solving unbalance of peaking is great necessary. In this paper, we propose reserve classification control model which contain constant reserve control model with real-time reserve control model to guide the peaking balance of the grid with intermittent generation. The proposed model associate time-period constant reserve control model with real-time reserve control model to calculate, and use the peaking margin as intermediate variable. Therefore, the model solutions which are the capacity of reserve classification are obtained. The grid operators use the solution to achieve the peaking balance control. The proposed model was examined by real grid operation case, and the results of the case demonstrate the validity of the proposed model.


Author(s):  
Kufre Esenowo Jack ◽  
Nsikak John Affia ◽  
Uchenna Godswill Onu ◽  
Emmanuel Okekenwa ◽  
Ernest Ozoemela Ezugwu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document