Design of Low-cost Desktop Robot Based on 3D Printing Technology and Open-source Control System

Author(s):  
Liu Tiansong ◽  
Guo Feng ◽  
Yu Yilong
2019 ◽  
Author(s):  
Soichiro Tsuda ◽  
Lewis A. Fraser ◽  
Salah Sharabi ◽  
Mohammed Hezwani ◽  
Andrew Kinghorn ◽  
...  

Here, we integrate 3D-printing technology with low-cost open source electronics to develop a portable diagnostic platform suitable for a wide variety of diagnostic and sensing assays. We demonstrate two different clinical applications in the diagnosis of <i>Clostridium difficile</i> infection and malaria.


2019 ◽  
Author(s):  
Soichiro Tsuda ◽  
Lewis A. Fraser ◽  
Salah Sharabi ◽  
Mohammed Hezwani ◽  
Andrew Kinghorn ◽  
...  

Here, we integrate 3D-printing technology with low-cost open source electronics to develop a portable diagnostic platform suitable for a wide variety of diagnostic and sensing assays. We demonstrate two different clinical applications in the diagnosis of <i>Clostridium difficile</i> infection and malaria.


Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Timothy Campbell ◽  
Jonathan Stone ◽  
Arun Parmar ◽  
Edward Vates ◽  
Amrendra Miranpuri

Introduction: While stroke remains a leading cause of death and disability, recent advances in endovascular technology an important opportunity to make a significant impact in clinical outcomes. However, training opportunities are rare, preventing dissemination of these techniques. Hands-on training is further complicated by the critical time to therapy associated with stroke treatment. This physical simulator was built for neurosurgical residents and fellows to practice mechanical thrombectomy. Methods: A simplified virtual model of the anterior cerebral circulation was created based on patient imaging. This luminal model was 3D printed using flexible filament and attached to a guide catheter at the proximal carotid to provide endovascular access and an IV tube at the distal M2 branches to permit outflow. A 7Fr sheath was also connected at the anterior cerebral artery to permit placement of a simulated clot model and simulate a proximal M1 occlusion. This entire construct was placed into a container of polyvinyl alcohol (PVA) and after crosslinking the flexible print was removed. Results: Using 3D printing technology and polymer hydrogels, a low-cost, high fidelity stroke model was achieved. Despite its simplified anatomy, the model permitted realistic wire and catheter navigation through the different segments of the internal carotid and middle cerebral arteries. The ACOM sheath provided a convenient method to reliably place an embolism and created a life-like proximal M1 occlusion. Recanalization was performed using the solumbra technique, which is used in live-patient cases. Conclusions: This model demonstrated proof of concept for a mechanical thrombectomy simulation. The angiographic profile and response to endovascular tools created a training experience similar to live endovascular procedures. As the model is perfected visually and mechanically, next steps are to perform validation studies and create a training curriculum.


2015 ◽  
Vol 667 ◽  
pp. 250-258 ◽  
Author(s):  
Da Xu Zhao ◽  
Xian Cai ◽  
Guo Zhong Shou ◽  
Yu Qi Gu ◽  
Pei Xin Wang

As a new kind of manufacturing technology developing rapidly, Material Increasing Manufacturing, scilicet 3D printing technology is that the popularity of various fields. In this paper, under the background of the desktop 3D printing gradually enter the family. To solve the printing material problem scilicet 3D printing technology development bottleneck, come up with a bamboo-plastic composite made of Bamboo powder and poly lactic acid (PLA), can be used on desktop 3D printing. Due to bamboo resources is abundant, low cost, and also have the advantages of friendly of environment, have a good potential for development. In this paper, the right formula is used in the study on preparation of materials, through the material blending; extrusion process to produce the 3D printing wire can meet the requirements. Through further studies on the ratio of bamboo and plastic, the amount of additives added, extrusion processing temperature and material situation, optimizing the ratio of bamboo and plastic, the amount of Additives, adjust the extrusion temperature in the formulation. Tests showed that through the improved technology, wires have further enhanced performance, continuous printing more than 300 meters, the printing effect is smooth, jam does not appear, and the molded parts have good quality.


2021 ◽  
Author(s):  
Callum Allen

<p><b>Pupils can provide important neurological information that can aid in the diagnosis of a range of conditions, including aneurysms, impending strokes and tumors in the lung (Gale, et al). In a research context, there is increasing interest in studying the intrinsically photosensitive Retinal Ganglion cells (ipRGC), which respond to intense blue light thanks to a photo pigment called melanopsin. Studying these cells could lead to a better understanding of sleep disorders and a range of optic nerve diseases. Although commercially available pupil testing devices do exist, all cost upwards of $10,000, and suffer from either poor portability or limitations in the tests they can perform. Specifically, the ipRGC require a specific intensity of blue light to be activated and measured, which most devices cannot produce. </b></p><p>In recent years, the open source movement has enabled users from around the world to freely collaborate on the development and distribution of their own products. At first, only software could be produced using this approach, however the continued improvement of 3D printing technology has enabled the same model to be applied to physical products as well. From a medical perspective, this is particularly exciting. </p><p>The aim of this research was to produce an inexpensive, open source pupilometer that runs on widely available components, can be distributed online and manufactured using 3D printing technology. In doing so, this thesis asks the question; How can an open source development and distribution model be used in conjunction with online 3D printing services and widely available parts and components to produce an inexpensive and open source pupilometer? </p><p>To answer this, a range of practice based methodologies, including research for design and research through design were used to explore this new potential. The resulting design proposal demonstrates how online file sharing platforms, in conjunction with distributed 3D printing services and online supply chains can be combined to develop new medical devices. The ability to collect pupil data using an open source pupilometer may lead to expanded data collection and diagnostic capabilities from doctors in a number of clinical settings, while a cloud based data collection system taking the form of a smartphone app will create a large biometric database and cooperative online research community. </p>


2020 ◽  
Vol 35 (8) ◽  
pp. 916-921
Author(s):  
Aysu Belen ◽  
Evrim Tetik

Placing dielectric lens structures into an antenna's aperture has proven to be one of the most reliable methods of enhancing its gain. However, the selected material and the prototyping method usually limit their fabrication process. With the advances in 3D printing technology and their applications, the microwave designs that were either impractical or impossible in the past to manufacture using traditional methods, are now feasible. Herein, a novel prototyping method by using 3D-printer technology for low-cost, broadband, and high gain dielectric lens designs has been presented. Firstly, the elliptical lens design has been modeled in the 3D EM simulation environment. Then fused deposition modeling based 3D-printing method has been used for the fabrication of the dielectric lens. The measured results of the 3D printed antenna show that the lens antenna has a realized gain of 17 to 20.5 dBi over 8-12 GHz. Moreover, the comparison of the prototyped antenna with its counterpart dielectric lens antenna in the literature has indicated that the proposed method is more efficient, more beneficial, and has a lower cost.


2016 ◽  
Vol 8 (12) ◽  
pp. 1118-1126 ◽  
Author(s):  
Hui Chen ◽  
Yanqi Wu ◽  
Zhu Chen ◽  
Xianbo Mou ◽  
Zhiyang Li ◽  
...  

2021 ◽  
Author(s):  
Callum Allen

<p><b>Pupils can provide important neurological information that can aid in the diagnosis of a range of conditions, including aneurysms, impending strokes and tumors in the lung (Gale, et al). In a research context, there is increasing interest in studying the intrinsically photosensitive Retinal Ganglion cells (ipRGC), which respond to intense blue light thanks to a photo pigment called melanopsin. Studying these cells could lead to a better understanding of sleep disorders and a range of optic nerve diseases. Although commercially available pupil testing devices do exist, all cost upwards of $10,000, and suffer from either poor portability or limitations in the tests they can perform. Specifically, the ipRGC require a specific intensity of blue light to be activated and measured, which most devices cannot produce. </b></p><p>In recent years, the open source movement has enabled users from around the world to freely collaborate on the development and distribution of their own products. At first, only software could be produced using this approach, however the continued improvement of 3D printing technology has enabled the same model to be applied to physical products as well. From a medical perspective, this is particularly exciting. </p><p>The aim of this research was to produce an inexpensive, open source pupilometer that runs on widely available components, can be distributed online and manufactured using 3D printing technology. In doing so, this thesis asks the question; How can an open source development and distribution model be used in conjunction with online 3D printing services and widely available parts and components to produce an inexpensive and open source pupilometer? </p><p>To answer this, a range of practice based methodologies, including research for design and research through design were used to explore this new potential. The resulting design proposal demonstrates how online file sharing platforms, in conjunction with distributed 3D printing services and online supply chains can be combined to develop new medical devices. The ability to collect pupil data using an open source pupilometer may lead to expanded data collection and diagnostic capabilities from doctors in a number of clinical settings, while a cloud based data collection system taking the form of a smartphone app will create a large biometric database and cooperative online research community. </p>


Sign in / Sign up

Export Citation Format

Share Document