Realization of Modified Elliptical Shaped Dielectric Lens Antenna for X Band Applications with 3D Printing Technology

2020 ◽  
Vol 35 (8) ◽  
pp. 916-921
Author(s):  
Aysu Belen ◽  
Evrim Tetik

Placing dielectric lens structures into an antenna's aperture has proven to be one of the most reliable methods of enhancing its gain. However, the selected material and the prototyping method usually limit their fabrication process. With the advances in 3D printing technology and their applications, the microwave designs that were either impractical or impossible in the past to manufacture using traditional methods, are now feasible. Herein, a novel prototyping method by using 3D-printer technology for low-cost, broadband, and high gain dielectric lens designs has been presented. Firstly, the elliptical lens design has been modeled in the 3D EM simulation environment. Then fused deposition modeling based 3D-printing method has been used for the fabrication of the dielectric lens. The measured results of the 3D printed antenna show that the lens antenna has a realized gain of 17 to 20.5 dBi over 8-12 GHz. Moreover, the comparison of the prototyped antenna with its counterpart dielectric lens antenna in the literature has indicated that the proposed method is more efficient, more beneficial, and has a lower cost.

Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2492
Author(s):  
Jun Wang ◽  
Bin Yang ◽  
Xiang Lin ◽  
Lei Gao ◽  
Tao Liu ◽  
...  

3D printing technology has been widely used in various fields, such as biomedicine, clothing design, and aerospace, due to its personalized customization, rapid prototyping of complex structures, and low cost. However, the application of 3D printing technology in the field of non-pneumatic tires has not been systematically studied. In this study, we evaluated the application of potential thermoplastic polyurethanes (TPU) materials based on FDM technology in the field of non-pneumatic tires. First, the printing process of TPU material based on fused deposition modeling (FDM) technology was studied through tensile testing and SEM observation. The results show that the optimal 3D printing temperature of the selected TPU material is 210 °C. FDM technology was successfully applied to 3D printed non-pneumatic tires based on TPU material. The study showed that the three-dimensional stiffness of 3D printed non-pneumatic tires is basically 50% of that obtained by simulation. To guarantee the prediction of the performance of 3D printed non-pneumatic tires, we suggest that the performance of these materials should be moderately reduced during the structural design for performance simulation.


2020 ◽  
Vol 1 (2) ◽  
pp. 81-91
Author(s):  
Frince Marbun ◽  
Richard A.M. Napitupulu

3D printing technology has great potential in today's manufacturing world, one of its uses is in making miniatures or prototypes of a product such as a piston. One of the most famous and inexpensive 3D printing (additive manufacturing) technologies is Fused Deposition Modeling (FDM), the principle FDM works by thermoplastic extrusion through a hot nozzle at melting temperature then the product is made layer by layer. The two most commonly used materials are ABS and PLA so it is very important to know the accuracy of product dimensions. FDM 3D Printing Technology is able to make duplicate products accurately using PLA material. FDM machines work by printing parts that have been designed by computer-aided design (CAD) and then exported in the form of STL or .stl files and uploaded to the slicer program to govern the printing press according to the design. Using Anet A8 brand 3D printing tools that are available to the public, Slicing of general CAD geometry files such as autocad and solidwork is the basis for making this object. This software is very important to facilitate the design process to be printed. Some examples of software that can be downloaded and used free of charge such as Repetier-Host and Cura. by changing the parameters in the slicer software is very influential in the 3D printing manufacturing process.


2019 ◽  
Vol 298 ◽  
pp. 64-68
Author(s):  
Yu Hua Dai ◽  
Xi Wang

As a branch of 3D printing technology, metal 3D printing is an important advanced manufacturing processing method. Metal 3D printing technology has been widely applied in a variety of areas, including the aerospace field, biomedical research and mold manufacturing. This paper proposed a new method for melting metal wires via contact resistance heating. Through the combination of a numerical control technique, a mechanical structure and computer software, a metal 3D printing device was designed based on the principle of fused deposition modeling. The printing nozzle of the device can be heated to over 1400°C in a few minutes. Additionally, we performed experiments with aluminum wire to demonstrate the feasibility of the printing method. The designed consumer-level desktop metal 3D printer cost less than 1500 dollars to fabricate.


Author(s):  
Tran Linh Khuong ◽  
Zhao Gang ◽  
Muhammad Farid ◽  
Rao Yu ◽  
Zhuang Zhi Sun ◽  
...  

Biomimetic robots borrow their structure, senses and behavior from animals, such as humans or insects, and plants. Biomimetic design is design ofa machine, a robot or a system in engineeringdomain thatmimics operational and/orbehavioral model of a biological system in nature. 3D printing technology has another name as rapid prototyping technology. Currently it is being developed fastly and widely and is applied in many fields like the jewelry, footwear, industrial design, architecture, engineering and construction, automotive, aerospace, dental and medical industry, education, geographic information system, civil engineering, guns. 3D printing technology is able to manufacture complicated, sophisticated details that the traditional processing method cannot manufacture. Therefore, 3D printing technology can be seen as an effective tool in biomimetic, which can accurately simulate most of the biological structure. Fused Deposition Modeling (FDM) is a technology of the typical rapid prototyping. The main content of the article is the focusing on tensile strength test of the ABS-Acrylonitrile Butadiene Styrene material after using Fused Deposition Modeling (FDM) technology, concretization after it’s printed by UP2! 3D printer. The article focuses on two basic features which are Tensile Strength and Determination of flexural properties.


2019 ◽  
Vol 8 (2) ◽  
pp. 240 ◽  
Author(s):  
Xingting Han ◽  
Dong Yang ◽  
Chuncheng Yang ◽  
Sebastian Spintzyk ◽  
Lutz Scheideler ◽  
...  

Fused deposition modeling (FDM) is a rapidly growing three-dimensional (3D) printing technology and has great potential in medicine. Polyether-ether-ketone (PEEK) is a biocompatible high-performance polymer, which is suitable to be used as an orthopedic/dental implant material. However, the mechanical properties and biocompatibility of FDM-printed PEEK and its composites are still not clear. In this study, FDM-printed pure PEEK and carbon fiber reinforced PEEK (CFR-PEEK) composite were successfully fabricated by FDM and characterized by mechanical tests. Moreover, the sample surfaces were modified with polishing and sandblasting methods to analyze the influence of surface roughness and topography on general biocompatibility (cytotoxicity) and cell adhesion. The results indicated that the printed CFR-PEEK samples had significantly higher general mechanical strengths than the printed pure PEEK (even though there was no statistical difference in compressive strength). Both PEEK and CFR-PEEK materials showed good biocompatibility with and without surface modification. Cell densities on the “as-printed” PEEK and the CFR-PEEK sample surfaces were significantly higher than on the corresponding polished and sandblasted samples. Therefore, the FDM-printed CFR-PEEK composite with proper mechanical strengths has potential as a biomaterial for bone grafting and tissue engineering applications.


2018 ◽  
Vol 237 ◽  
pp. 02006 ◽  
Author(s):  
Katarzyna Bryll ◽  
Elżbieta Piesowicz ◽  
Paweł Szymański ◽  
Wojciech Ślączka ◽  
Marek Pijanowski

3D printing technology was developed nearly 30 years ago. One of its characteristics is that instead of removing materials, 3D printing creates 3D elements directly from CAD models, adding one layer of material on another. This offers a beneficial capability of making complex elements in terms of shape and materials, impossible to be manufactured by traditional methods. Owing to intensive research in recent years, considerable progress has been achieved in the development and commercialisation of new innovative processes of 3D printing by fused deposition modeling (FDM), including printing of composite materials. The study outlines the main methods of creating polymer composite structures using FDM technology.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3321
Author(s):  
Diogo Helena ◽  
Amélia Ramos ◽  
Tiago Varum ◽  
João N. Matos

With the rise of 5G, Internet of Things (IoT), and networks operating in the mmWave frequencies, a huge growth of connected sensors will be a reality, and high gain antennas will be desired to compensate for the propagation issues, and with low cost, characteristics inherent to metallic radiating structures. 3D printing technology is a possible solution in this way, as it can print an object with high precision at a reduced cost. This paper presents different methods to fabricate typical metal antennas using 3D printing technology. These techniques were applied as an example to pyramidal horn antennas designed for a central frequency of 28 GHz. Two techniques were used to metallize a structure that was printed with polylactic acid (PLA), one with copper tape and other with a conductive spray-paint. A third method consists of printing an antenna completely using a conductive filament. All prototypes combine good results with low production cost. The antenna printed with the conductive filament achieved a better gain than the other structures and showed a larger bandwidth. The analysis recognizes the vast potential of these 3D-printed structures for IoT applications, as an alternative to producing conventional commercial antennas.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 128 ◽  
Author(s):  
Maisa Araújo ◽  
Livia Sa-Barreto ◽  
Tais Gratieri ◽  
Guilherme Gelfuso ◽  
Marcilio Cunha-Filho

The pharmaceutical industry is set to join the fourth industrial revolution with the 3D printing of medicines. The application of 3D printers in compounding pharmacies will turn them into digital pharmacies, wrapping up the telemedicine care cycle and definitively modifying the pharmacotherapeutic treatment of patients. Fused deposition modeling 3D printing technology melts extruded drug-loaded filaments into any dosage form; and allows the obtainment of flexible dosages with different shapes, multiple active pharmaceutical ingredients and modulated drug release kinetics—in other words, offering customized medicine. This work aimed to present an update on this technology, discussing its challenges. The co-participation of the pharmaceutical industry and compounding pharmacies seems to be the best way to turn this technology into reality. The pharmaceutical industry can produce drug-loaded filaments on a large scale with the necessary quality and safety guarantees; while digital pharmacies can transform the filaments into personalized medicine according to specific prescriptions. For this to occur, adaptations in commercial 3D printers will need to meet health requirements for drug products preparation, and it will be necessary to make advances in regulatory gaps and discussions on patent protection. Thus, despite the conservatism of the sector, 3D drug printing has the potential to become the biggest technological leap ever seen in the pharmaceutical segment, and according to the most optimistic prognostics, it will soon be within reach.


Sign in / Sign up

Export Citation Format

Share Document